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Chapter 1. Introduction 

1. Overview 

 Since the first ab initio methods were developed, the ultimate goal of quantum chemistry has been to 

provide insights, not readily accessible through experiment, into chemical phenomena.  Over the years, two 

different paths to this end have been taken. The first path provides as accurate a description of relatively small 

systems as modern computer hardware will allow1.  The second path follows the desire to perform simulations 

on systems of physically relevant sizes while sacrificing a certain level of accuracy2.  The merging of these two 

paths has allowed for the accurate modeling of large molecular systems through the use of novel theoretical 

methods3-9.  The largest barrier to achieving the goal of accurate calculations on large systems has been the 

computational requirements of many modern theoretical methods.  While these methods are capable of 

providing the desired level of accuracy, the prohibitive computational requirements can limit system sizes to 

tens of atoms.  By decomposing large chemical systems into more computationally tractable pieces, 

fragmentation methods have the capability to reduce this barrier and allow for highly accurate descriptions of 

large molecular systems such as proteins, bulk phase solutions and polymers and nano-scale systems.    

2. Dissertation Organization 

 The introductory section of this thesis provides the foundation of ab initio quantum chemistry relevant 

to the theoretical methods presented in the following chapters.  Chapter 2 provides a detailed history of 

fragmentation methods, including rigorous formalism and applications of the most important methods.  Chapter 

3 details new developments and a rigorous comparison of two modern fragmentation methods, the FMO method 

and the systematic molecular fragmentation (SMF) method, for water clusters.  Chapter 4 describes the 

development of the restricted open-shell formulation of the FMO method (FMO-ROHF).  Chapter 5 builds upon 

the initial FMO-ROHF method through the addition of gradients.  Chapter 6 describes the development and 

extension of the effective fragment molecular orbital (EFMO) method to model all relevant intermolecular 

forces. 

3. Theoretical Background 

 Modern ab initio quantum chemical methods are derived from the first principles of quantum 

mechanics.  The time-dependent Schrödinger equation10  

 

∂Ψ(r,t)
∂t

= −
i


HΨ(r,t)            (1) 
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describes a system of particles at any time t.  Ψ(r, t )  is a state function that describes the position r of the 

particles at time t, i is −1 ,    is Planck’s constant divided by 2π and H is the Hamiltonian operator.  This 

equation is the fundamental expression upon which all of ab initio quantum chemistry is based.   

 To arrive at the formalism of many modern quantum chemistry methods, a variety of approximations 

to this fundamental expression must be made.  The first of these approximations is the removal of time 

dependence by focusing on the stationary state solutions to Eq. (1).  This simplification allows Eq. (1) to be 

reduced to an eigenvalue problem: 

HΨ(r) = EΨ(r)             (2) 

The total energy of the system, E, is determined by the application of the Hamiltonian operator to the 

eigenfunction Ψ(r) .  The complete form of the Hamiltonian operator for a system composed of n nuclei and e 

electrons is 

H = −
1
2

∇i
2 −

i=1

e

∑ 1
2

∇A
2

mA

+
A=1

n

∑ ZA

RA − rii=1

e

∑
A=1

n

∑ +
1

ri − rji> j

e

∑ +
ZAZB

RA − RBA>B

n

∑       (3) 

where∇ is the Laplacian operator, mA is the mass ratio of a nucleus and an electron, Z is the nuclear charge, R 

represents the coordinates of nuclei and r represents the coordinates of electrons.  Each of the terms in Eq. (2) 

describes a different interaction between electrons and nuclei, including the electronic and nuclear kinetic 

energy (terms 1 and 2), nuclear-electron attraction (term 3), electron-electron repulsion (term 4) and nuclear-

nuclear repulsion (term 5). 

 From the form of H in Eq. (3) arises the second approximation, due to the difference between electrons 

and nuclei. Proportionally, nuclei are significantly more massive (~3 orders of magnitude) than electrons, and 

therefore move with much slower velocity.  From the perspective of the much lighter and faster moving 

electrons, the nuclei appear to be at fixed positions in space.  Conversely, the nuclei only “feel” the averaged 

potential of the electron cloud, since the electrons rearrange instantaneously with changes in the positions of the 

nuclei.  This allows for the electronic distribution to be calculated based upon the nuclei being fixed in space.  

This separation of electronic and nuclear motion is called the Born-Oppenheimer approximation11.  Invoking 

this approximation effectively removes terms 2 and 5 from Eq. (3).  The resulting expression, called the 

electronic Hamiltonian, is written as: 

Helec = −
1
2

∇i
2 −

i=1

e

∑ ZA

RA − rii=1

e

∑
A=1

n

∑ +
1

ri − rji> j

e

∑          (4) 
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This expression contains only terms that do not depend on the nuclear coordinates exclusively.  Applying both 

of these approximations to Eq. (1) results in: 

HelecΨ elec = EelecΨ elec                  (5) 

Eq. (5) can now be solved to obtain the electronic energy, Eelec, of the system at a given set of nuclear positions, 

with the nuclear-nuclear repulsion energy (term 5 in Eq. (3)) solved for separately.   

 While these first two approximations have greatly simplified the initial equation to be solved, the 

resultant equations still cannot be solved for systems containing more than one electron due to the inseparability 

of the problem.  The trouble arises specifically from term 3 in Eq. (4), which represents the repulsive electron-

electron interaction.  In an effort to circumvent this problem, the Hartree-Fock (HF) approximation12 is applied 

to Eq. (4) for many electron systems.   By replacing term 5 in Eq. (4) with a one-electron potential vHF (i) , the 

ith electron experiences a smeared out average of all other electrons in the system, effectively avoiding the 

calculation of explicit electron-electron interactions.  Eq. (4) can now be rewritten as: 

F = −
1
2

∇i
2 −

i=1

e

∑ ZA

RA − rii=1

e

∑
A=1

n

∑ + vHF (i)
i=1

e

∑          (6) 

Eq. (6) is the so-called one-electron Fock operator.  Due to the one-electron nature of the Fock operator, a 

simple product of one-electron orbitals representing each electron, called a Hartree product, may be used to 

describe a many-electron system.  Each of these orbitals can be constructed from a linear combination of atomic 

orbitals (LCAO), commonly referred to as basis functions: 

ψi = Cµiφµ
µ

∑              (7) 

Eq. (7) shows the expansion of the ith molecular orbital as a sum of µ  basis functions, where the C
µi  represent 

the LCAO coefficients.  To obtain the exact expansion a complete set of basis functions is necessary, however a 

complete set would be infinite, thereby making such calculations intractable.  In practice, a finite number of 

basis functions are used to perform the expansion in Eq. (7), with a larger number of basis functions providing 

solutions closer to the exact one.   

 The Hartree product wavefunction for a system of N electrons that is produced by the aforementioned 

procedure 

ΨHP =ψ1ψ2ψ3ψ4 ...ψN             (8) 
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still has a fundamental deficiency, since it does not take into account the indistinguishability of electrons, 

specifically distinguishing each electron as occupying a particular orbital.  This violates the anti-symmetry, or 

Pauli exclusion, principle that requires an electronic wavefunction to be anti-symmetric with respect to the 

interchange of any two electrons.  However, this requirement can be enforced through the use of Slater 

determinants13, giving the final form of a Hartree Fock wavefunction as: 

ΨHF = ψ1ψ2ψ3ψ4 ...ψN            (9) 

 Since the solutions to Eq. (7) depend upon knowledge of the HF orbitals, an iterative method must be 

used, called the self-consistent field (SCF) procedure.  The SCF procedure begins with a guess at the HF 

orbitals, followed by the calculation of the electronic density for these orbitals.  From the density the Fock 

matrix can be assembled and diagonalized, producing a new set of molecular orbitals.  These new orbitals can 

then be used as a subsequent guess at the HF orbitals.  This process is then repeated until the density no longer 

changes within a predetermined amount.   

 The HF energy obtained from this procedure, EHF, is guaranteed to be greater than the exact energy, 

Eexact, by the variational principle.  The variational principle states that the energy obtained from any 

approximate wavefunction will be an upper bound on the exact non-relativistic energy.  This means that for 

each subsequent SCF iteration the energy obtained will approach the exact energy.   

 Depending on the chemical system of interest, there are different representations of the HF 

wavefunction.  Closed shell systems with no unpaired electrons may be represented using spin restricted Hartree 

Fock (RHF).  This method restricts spatial orbital occupation numbers to two electrons of opposite spin and is 

used exclusively for closed-shell systems.  When a chemical system contains any number of unpaired electrons, 

the restriction on spatial orbital occupation numbers must be loosened to include occupation of a spatial orbital 

by either one or two electrons.  There are two formalisms used to describe such systems, spin restricted open-

shell Hartree Fock (ROHF)14 and spin unrestricted Hartree Fock (UHF)15.  While ROHF allows for orbitals to 

be occupied by a single electron, two electrons of opposite spin occupy spatial orbitals containing an electron 

pair just as they would in the RHF case.  In the UHF formalism, each electron is placed in a different spatial 

orbital depending upon its spin state.  The relaxation of the restriction on spatial orbitals being doubly occupied 

leads to lower energies for UHF wavefunctions compared to ROHF wavefunctions.  However, since a UHF 

wavefunction is not an eigenfunction of the spin operator Ŝ 2 , UHF wavefunctions often suffer from spin 

contamination by higher multiplicity states.   

 While these different formulations of the HF method can provide descriptions of a variety of chemical 

systems, the approximation made in obtaining Eq. 6 prevents the inclusion of electron-electron correlation.  

Although small, the energy obtained from this dynamic correlation plays an important role in the relative 

energetics of chemical systems.  In an effort to regain the dynamic correlation energy lost through the use of the 
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HF approximation, higher levels of theory can be appended onto the standard HF methodology.  Using the HF 

wavefunction as a starting point, theoretical methods such as second order Møller-Plesset perturbation theory 

(MP2)16 and coupled cluster theory (CC)1, commonly referred to as post-Hartree Fock methods, are capable of 

recovering a portion of the dynamic correlation energy.   

 Perturbation theory is derived from the addition of a small perturbation, V, to the HF Hamiltonian: 

H = H0 +λV            (10) 

Expansion of the energy and wavefunction in a Taylor series yields: 

Ei = Ei
(0) +λEi

(1) +λ 2Ei
(2) + ...          (11) 

Φi = i +λ Ψ i
(1) +λ 2 Ψ i

(2) + ...         (12) 

In Eq. (12) |i> represents the zeroth order wavefunction. Solving for i V j , we choose  

i j =δij            (13) 

i Φi =1            (14) 

where δij is the Kronecker delta.  Using Eqs. (11) - (14), expressions for the zeroth, first and second order 

energy and wavefunction can be derived.  Since the Hartree Fock energy (EHF) contains the zeroth and first 

order energies, the second order energy 

Ei
(2) = i V Ψ i

(1)           (15) 

is added to EHF.  Further rearrangement of Eq. (15) to express the second order energy in terms of the zeroth 

order wavefunction gives   

Ei
(2) =

i V n
2

Ei
(0) −En

(0)
n
∑           (16) 

where the summation includes all states except the ground state of the system.  However, the states represented 

by n  cannot be single excitations since their contributions are zero.  This leaves double excitations as the sole 

contribution to the second order energy, leading to the expression for the MP2 energy (EMP2) 
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EMP2 = EHF +
i V Ψab

rs 2

εa +εb −εr −εsa<b
r<s

∑         (17) 

where the summation in Eq. (17) is over all possible double excitations from occupied orbitals (a and b) to 

virtual orbitals (r and s).  The application of MP2 can recover between 80 and 90% of the total dynamic 

correlation energy. In addition to the recovery of dynamic correlation energy, MP2 has other advantages, 

including being size consistent and size extensive.  Size consistent methods are those in which the energy of 

two infinitely separated, identical molecules is equal to double the energy of a single molecule.  Size extensive 

methods produce a total energy that scales linearly with the number of particles.  The main disadvantage of 

MP2 is that it is not a variational method, since the exact Hamiltonian is not used. Additionally, higher order 

energy corrections (third, fourth and higher orders of perturbation theory) have been derived; yet only MP2 has 

become a reliable method due to convergence issues inherent with higher order corrections.  

 Another post-Hartree Fock method, CC theory recovers more dynamic correlation energy than MP2 

theory but at a considerably higher cost.  The CC formalism is based upon the use of a cluster operator  

T̂ = T̂1 + T̂2 + T̂3 + ...+ T̂n          (17) 

where T̂1  represents the single electron excitation operator, T̂2  represents the two electron excitation operator 

and so on. The cluster operator can be expressed in exponential form as a Taylor series expansion: 

eT̂ =1+ T̂ +
1
2!

T̂ 2 +
1
3!

T̂ 3 + ...          (18) 

In practice this expansion is truncated at single and double (CCSD) or single, double and triple (CCSDT) 

excitations.  However, due to increasing computational cost, the triple excitations are commonly obtained using 

perturbation theory (CCSD(T)).  The truncated set of cluster operators then operates on the Hartree Fock 

wavefunction to produce the coupled cluster energy.   

 Due to the importance of dynamic electron correlation in accurate modeling of chemical processes, it is 

desirable to use either MP2 or CC when computationally feasible.  Unfortunately, while both the MP2 and CC 

methods provide an effective way to recover the dynamic correlation energy from a HF reference, these 

methods are limited by their treatable system size.  The computational cost for HF theory scales modestly as 

O(n4), where n measures the size of the system, for example in the number of basis functions or number of 

atoms.  With the use of MP2 or CC theory, the computational cost increases significantly, with MP2 and CC 

scaling as O(n5) and O(n7) respectively.  Beyond the initial computational scaling of these methods, the memory 
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requirements for CC scale as O(n4), adding an additional level of difficulty in modeling systems larger than ~10 

heavy atoms using a moderately sized basis set.  

 In an effort to achieve the desired level of accuracy obtained through the use of MP2 or CC methods 

without limiting the treatable system size, a novel approach must be taken.  The most common approach to this 

end is the decomposition of molecular systems into smaller pieces or “fragments” of a more tractable size.  This 

allows the overall system size to increase without significantly increasing the computational cost beyond that of 

the method employed.  There have been many such methods proposed, however the main focus of this 

dissertation will be one such method, the FMO method17. 

 The FMO method is based upon the assumption that electron exchange, charge transfer and self-

consistency are local effects.  Breaking a molecular system into fragments and treating far separated fragments 

using only the one-electron Coloumb operator can achieve significant reductions in computational cost.  This 

reduction in computational cost is further enhanced by the inherent parallelizability of the method, since each 

fragment calculation is essentially autonomous from all others.  Computational algorithms, specifically the 

generalized distributed data interface (GDDI), have been implemented to take advantage of this by performing 

each fragment calculation in separate groups of compute nodes (coarse-grained parallel), with each group 

performing the assigned fragment calculation internally in parallel (fine-grained parallel).  This two level 

parallelization scheme allows for nearly linear scaling of the FMO method with system size.  

 The general formalism of the FMO method begins with the expression for the n-body FMOn energy of 

a system of N fragments 

EFMO2 = EI
I

N

∑ + EIJ −EI −EJ( )
I>J

N

∑         (15) 

EFMO3 = EFMO2 + EIJK − EI − EJ − EK − ΔEIJ − ΔEJK − ΔEIK( )
I >J >K

N

∑      (16) 

where 

ΔEIJ = EIJ − EI − EJ           (17) 

and EI, EIJ and EIJK are the monomer (single fragment), dimer (fragment pair) and trimer (fragment triple) 

energies, respectively, computed in the electrostatic field of other fragments.  Additional details of the FMO 

method as well as many other modern fragmentation methods will be presented in Chapter 2. 
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Chapter 2. Fragmentation Methods: A Route to Accurate Calculations on Large Systems 

A paper published in Chemical Reviews  

Mark S. Gordon, Dmitri G. Fedorov, Spencer R. Pruitt, Lyuda V. Slipchenko 

Abstract   

The development history of fragment-based methods including quantum mechanics derived force fields is 

reviewed in the context of other reduced scaling methods such as the interaction analyses. For some important 

methods a mathematical description is provided in some detail, and the applications of all methods are 

introduced according to their field. Some attention is paid to available software to perform practical calculations. 

1. Introduction 

 Theoretical chemists have always strived to perform quantum mechanics (QM) calculations on larger and 

larger molecules and molecular systems, as well as condensed phase species, that are frequently much larger 

than the current state-of-the-art would suggest is possible. The desire to study species (with acceptable 

accuracy) that are larger than appears to be feasible has naturally led to the development of novel methods, 

including semi-empirical approaches, reduced scaling methods, and fragmentation methods. The focus of the 

present review is on fragmentation methods, in which a large molecule or molecular system is made more 

computationally tractable by explicitly considering only one part (fragment) of the whole in any particular 

calculation. If one can divide a species of interest into fragments, employ some level of ab initio QM to 

calculate the wavefunction, energy, and properties of each fragment, and then combine the results from the 

fragment calculations to predict the same properties for the whole, the possibility exists that the accuracy of the 

outcome can approach that which would be obtained from a full (non-fragmented) calculation. It is this goal that 

drives the development of fragmentation methods. 

 An additional potential positive aspect of fragmentation methods is their ability to take advantage of 

massively parallel computers. If one can calculate the energy of each fragment in such a manner that the 

fragment calculation is essentially independent of the calculations for all of the other fragments, then each 

fragment calculation can be performed on a separate compute node. This is sometimes called coarse-grained 

parallel computing, and it can be very efficient. If, in addition, the QM algorithm one is using (e.g., for second 

order perturbation theory, MP2) has itself been developed for parallel hardware, one can implement a multi-

level parallel approach, with fine-grained parallelism employed among the core within each node. This further 

improves the parallel efficiency of the calculation. 1 

 Aiming at achieving computational efficiency, a variety of methods based on localized orbitals was 

developed starting with Adams in 1961.2 These methods are only briefly mentioned in this review, as they 
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typically deal with orbitals in the full system rather than molecular fragments. Klessinger and McWeeny3 in 

1965 in their Group SCF (self-consistent field) method suggested defining molecular orbital groups to reduce 

the scaling of SCF. Christoffersen and co-workers4,5,6,7,8,9,10,11,12,13,14 employed localized molecular orbitals 

(LMOs) and floating spherical Gaussian orbitals (FSGO)15 to separate the sub-density matrices of fragments 

that are then summed to obtain the total density and (thereby) desired properties. The method has been applied 

with success to many species, including molecules of biological importance. As another important example, 

Stoll and Preuß16  in 1977 used a subsystem-based approximation to define the total density, and suggested 

many-body corrections to the energy from the density computed at these levels. Stoll 17 in 1992 suggested 

many-body incremental corrections to the correlation energy, based on LMOs. In a group of methods based on 

the divide-and-conquer (DC) idea, 18 an ad hoc total density from fragment calculations is constructed, followed 

by a single energy evaluation using this density. Divide and conquer methods are still an active area of 

research.19 

 The elongation method (usually abbreviated as ELG), based upon localized orbitals, was developed by 

Imamura20 in 1991 (related to the earlier work by Demelo et al.21) to enable calculations on large polymeric 

chains at the computational cost of a much smaller system.  A good example of an application for which the 

ELG method was developed is that of a polymerization/copolymerization reaction.  Reactions of this type begin 

with an initiation step, followed by some number of propagation steps, and ultimately complete with a 

termination step. This is the series of steps that are employed in the elongation methodology.  Initially, the 

applicability of the elongation method was limited to periodic polymer chains,20 however the method has since 

been extended to aperiodic systems22 and hydrogen bonded systems such as water clusters.23  Since the original 

formulation, a new localization scheme24 (a central aspect of the formalism) as well as extensions have been 

proposed. 25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 The elongation method is fundamentally an LMO approach, 

rather than a fragment-based approach, so it is discussed only briefly here. 

 There have been many fragment-like approaches to electronic structure theory, in which fragments appear as 

groups of atoms and the electronic state of the full system is computed. Morokuma44 in 1971 systematically 

considered both the Hartree product wave function and the fully antisymmetrized total wave functions 

constructed fom wave functions of two weakly interacting fragments. This approach was extended to an 

arbitrary number of fragments by Ohno and Inokuchi45 for an antisymmetrized product in 1972, and by Gao46 

for a Hartree product in 1997. Some theoretical foundations for fragment-based methods were given by 

Kutzelnigg and Maeder in 1978. 47  

 The idea of performing fragment calculations in the Coulomb field of other fragments with or without the 

corresponding exchange has been reinvented and reformulated over the years in various forms, and given names 

such as mutual consistent field (MCF), 48 structural SCF, 49 self-consistent embedded ions (SCEI), 50,51 double 

self-consistent field (DSCF), 52 self-consistent charge (SCC)53 and monomer SCF. 54 One of the early methods to 

accomplish this self-consistent cycle is due to Morokuma44 in 1971; The Morokuma development was followed 
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by the systematic work of Ohno45 in 1972 and the energy decomposition (EDA) method by Kitaura and 

Morokuma 55 in 1976. The EDA method was later extended to more than two fragments by Chen and Gordon56 

in 1996. While these earlier approaches were not intended for large-scale calculations, the MCF method by Otto 

and Ladik48 is the prototypical approach for self-consistent fragment calculations that are used today for large 

systems. Later it was applied to periodic systems by Bohm57 in 1982, Kubota et al.49 in 1994 and Pascual and 

Seijo51 in 1995. Gao employed this MCF approach in his molecular orbital-derived empirical potential for liquid 

simulations (MODEL) 46 in 1997 (later renamed explicit polarization, X-Pol) and by Kitaura et al.58 in the 

fragment molecular orbital (FMO) method in 1999.  

 An important advance in the development of fragment-based methods was made by the explicit division of 

the equations into blocks derived for individual fragments. While the earlier methods had to diagonalize the full 

Fock matrix,44,45,55 the introduction of strong orthogonality between fragment wave functions made it possible 

to block the fragment Fock matrices48,49,50,52,58 although they are still coupled in many methods via the 

electrostatic field. Here again, note the paramount importance of the MCF approach, 48 which with 

modifications has been integrated as a part of modern methods such as X-Pol and FMO. 

 Based on the starting point of computing the electronic state of individual fragments, two main branches of 

methods emerged for the consequent refinement of properties. The first group constitutes a perturbation 

treatment of fragment interactions, a typical example being the MCF method,48,59,60 ,61 ,62 ,63 ,64 ,65 ,66 ,67 ,68 ,69 in 

which the mutually polarized fragment wave functions are used in a perturbative manner to obtain the exchange 

and charge transfer interactions between fragments. The other group of methods was inspired by the desire to 

decompose intermolecular interactions into conceptually familiar components. In this group, pairs or larger 

conglomerates of fragments are computed, and the important concept is the treatment of many-body effects 

other than the electrostatics. One of the early methods was developed by Hankins et al.,70 who considered 

many-body corrections to intermolecular interactions in vacuum. By a clever introduction of the electrostatic 

potential (ESP) in the many-body expansion, Kitaura et al.58 in 1999 were able to incorporate many-body 

effects in the framework of a two-body expansion, conceptually reminiscent of some earlier methods70,16,17.  The 

systematic cancellation of the double counting of the Coulomb interaction in many-body calculations was 

shown diagrammatically by Fedorov and Kitaura in 2004.54 Suárez  et al.71 in 2009 discussed some general 

aspects of many-body expansions. Gao et al.72 suggested a means for including many-body effects using the 

total wave function. Many methods discussed in detail below partially consider many-body effects implicitly by 

computing large conglomerations of atoms (fragments).  

 In the original 1975 implementation of MCF by Otto and Ladik48, the wave function of a fragment was 

polarized by a partner fragment through modifying the Fock operator by the Coulomb potential of a partner. 

Simple monopole approximation was used originally to represent the electrostatic potential; HF equations for a 

pair of fragments were solved until self-consistency. This strategy automatically takes care of electrostatic and 

polarization effects. Exchange and charge-transfer energies were then obtained perturbatively based on the 
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polarized wave functions of the fragments. Later on, the method was extended by including a local exchange 

potential (using the original Slater expression) into the Fock operator and substituting the monopole 

approximation by distributed charges.59 In 1985 implementation of the pseudo-polarization tensor (PPT) 

MCF,65,67 point charges and pseudo-polarizabilities were calculated for each individual fragment, and the 

Coulomb and polarization interaction energies were computed using these charges and polarizabilities. So, PPT-

MCF is related to universal force fields, like EFP73,74,75 SIBFA76, and AMOEBA. 77  

 The idea of a perturbative treatment of fragment interactions has been further extended and developed in the 

symmetry-adapted perturbation theory (SAPT)78,79 by Moszynski, Jeziorski, and Szalewicz in which the 

interaction energy is expressed in orders of an intermolecular interaction operator V and a many body 

perturbation theory (MBPT) operator W.  The polarization energies are obtained from a regular Rayleigh-

Schrödinger perturbation theory; e.g., the Coulomb energy appears in the first order, induction and dispersion 

energies in the second order, etc. Additionally, the exchange corrections arise from the use of a global 

antisymmetrizer to force the correct permutational symmetry of the dimer wave function in each order. In this 

way, the exchange-repulsion energy appears in the first order, and exchange-induction and exchange-dispersion 

contribute to the second order of the perturbation theory. The supermolecular HF energy in SAPT can be 

represented by corrections in zero order in W, namely, Coulomb, induction, exchange, and exchange-induction. 

The SAPT2 level is roughly equivalent to supermolecular second order MBPT calculations. The new 

contributions to the interaction energy in the second order theory are Coulomb, induction, and exchange-

induction corrections that are second order in W, in addition to first and second order corrections to W for 

exchange, and zeroth-order dispersion and exchange-dispersion corrections. The highest routinely used level of 

SAPT is equivalent to fourth order supermolecular MBPT and includes third-order corrections to W for the 

Coulomb energy and higher orders of the exchange and dispersion energies.  

 SAPT was extended to enable its use with density functional theory (DFT)80. In this SAPT(DFT) scheme, 

Kohn-Sham (KS) orbitals and orbital energies are used to obtain Coulomb and exchange in zero order of W, 

similarly to how it is done in the wave function-based SAPT (essentially, by replacing HF orbitals with KS 

orbitals). Induction, dispersion, exchange-induction, and exchange-dispersion are calculated by using the 

frequency-dependent density susceptibility functions obtained from the time-dependent DFT theory at the 

coupled Kohn-Sham level of theory.80,81,82 The scaling of SAPT(DFT) is O(N6) and becomes O(N5) if density 

fitting is used.83,84 This is significantly better than the O(N7) scaling of the wave function-based SAPT.  

 In variational (i.e., HF) energy decomposition schemes, the total energy is typically represented as a sum of 

a frozen density interaction energy, a polarization energy, and a charge-transfer energy. The frozen density term 

is calculated as the interaction of the unrelaxed electron densities on the interacting molecules and consists of 

Coulomb and exchange contributions. The polarization term originates from the deformation of the electron 

clouds of the interacting molecules in the fields of each other. The charge transfer term arises due to the electron 

flow between the molecules in the system. Quantum mechanically, polarization and charge transfer terms can 
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be described as energy lowerings due to the intramolecular and intermolecular relaxation of the molecular 

orbitals, respectively. The main differences in the variational EDA schemes come from the manner in which the 

intermediate self-consistent energies, corresponding to the variationally optimized antisymmetrized wave 

functions constructed from MOs localized on the individual molecules, are determined.  

 The original EDA method of Kitaura and Morokuma55,85,86 (KM), which has become prototypical for many 

subsequent methods, lacks the antisymmetrization of the intermediate wave function, resulting in numerical 

instabilities of the polarization and charge-transfer components at short distances and with large basis sets. It is, 

however, not entirely artificial, but is connected to the intrinsic similarity between the intramolecular 

(polarization) and intermolecular charge transfers. The concept of the fragment (monomer) polarization is 

apparently not well defined with large basis sets, especially those that contain diffuse functions and are 

therefore not obviously localized on a given fragment. In this sense, when the polarization of fragments as an 

important physical concept is of interest, one may have to employ smaller basis sets. 

 The restricted variational space (RVS) analysis87,56 and the constrained space orbital variations (CSOV) 

method88,89 improve on the KM scheme by employing fully antisymmetrized intermediate wave functions. The 

main deficiency of both methods is that they do not produce self-consistent polarization energies (which results, 

for example, in a dependence on the order in which the fragments are treated) and do not completely separate 

charge-transfer from polarization. In the natural energy decomposition analysis (NEDA)90,91,92 the intermediate 

wave function is not variational and the resulting polarization and charge-transfer energies may be under- and 

overestimated, respectively. In absolutely localized molecular orbital (ALMO) approach93 by Head-Gordon, all 

energy terms are calculated variationally and the polarization and charge-transfer terms are naturally separated. 

Additionally, the charge-transfer energy can be decomposed into forward donation and back-bonding 

contributions. An earlier implementation of EDA based on the block localized wave function developed by Mo 

et al. is similar in spirit.94 

 Fedorov and Kitaura have extended the EDA method to covalently bound fragments by introducing the pair 

interaction energy decomposition analysis (PIEDA) 95 within the FMO framework58 and showed the equivalency 

of the fragment SCF in FMO and the polarized state of monomers in EDA. In the FMO method, one performs 

fragment calculations in the electrostatic field of other fragments, mutually self-consistent with each other. This 

approach provides the polarized state of the fragments including many-body polarization. In the EDA method, 

the same thing is accomplished by the restriction of orbital rotations, which only allows many-body polarization 

to take place for the interfragment interactions. The exact agreement of the resultant many-body polarization, 

shown numerically with the aid of PIEDA for water clusters, clearly demonstrated the equivalence of the self-

consistent fragment polarizations in FMO and EDA, in this regard.  

 In the EDA approach developed by Su and Li,96 the interaction energy is separated into Coulomb, exchange, 

repulsion, polarization, and dispersion terms. In contrast with the KM and other EDA schemes, the exchange 
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and repulsion energies in this scheme are separated according to the method of Hayes and Stone.97 Dispersion is 

obtained using a supermolecular approach and size-consistent correlation methods (MP2 or CCSD(T)). 

Polarization is defined as the orbital relaxation energy that occurs on going from the monomer to the 

supermolecular orbitals.  That is, the polarization interaction in the Su-Li EDA method includes both the 

polarization and charge-transfer contributions of the KM scheme. A DFT version of the Su-Li EDA scheme was 

also developed.  

 Wu et al developed a density-based EDA98, in which the energies of the intermediate states are calculated 

using the densities of the fragments, rather than their wave functions. Similarly to the KM EDA method, the 

total energy is separated into a frozen density Coulomb plus exchange repulsion terms, polarization, and charge-

transfer. The frozen density energy is obtained using the constrained search technique developed by Wu and 

Yang. 99  The polarization and charge-transfer terms are separated from each other by constructing an 

intermediate state in which the density is relaxed without charge transfer, using the constrained DFT method of 

Wu and Van Voorhis.100 The EDA approach is a useful tool for the development of reliable force fields for 

condensed phase molecular simulations.101,102,103,104,105,106,198,199,197 

 Related to EDA schemes and ideas is the self-consistent-field method for molecular interactions (SCF-MI) 

first introduced by Gianinetti et al.107 108 and further reformulated and extended by Nagata et al.109 In the SCF-

MI method one expands molecular orbitals of a given fragment in terms of only the atomic orbitals belonging to 

atoms of that fragment. This leads to absolutely localized MOs that are free from basis set superposition error 

(BSSE), but also prevents charge-transfer between the fragments. The charge-transfer interactions between the 

fragments can be added by means of the single excitation second order perturbation theory, as suggested by 

Nagata and Iwata.110 Khaliullin et al. showed that the SCF-MI method can result in significant computational 

savings (e.g., (N/O)2 speedups for the diagonalization step compared to the conventional SCF method)  and thus 

is applicable to systems containing hundreds of molecules.111 

 Murrell and co-workers developed a method called diatomics-in-molecules,112 that relied on a power 

expansion in the intermolecular overlap integral, in order to obtain a general expression for the intermolecular 

exchange repulsion. Jensen and Gordon113 built upon the Murrell approach using LMOs to derive a general 

expression for the intermolecular exchange repulsion interaction energy. 114,115 

 A number of fragment methods have been proposed based on the so called thermochemical116 analogy, i.e., 

by capping the fragments of interest and eliminating or subtracting the effect of the caps. These include the 

molecular fractionation with conjugate caps (MFCC) method, 117 its later extension, the generalized energy-

based fragmentation (GEBF) method, 118 the molecular tailoring approach (MTA), 119 the kernel energy method 

(KEM) and the fragment energy method (FEM). 71 The relation between these has been discussed by Suárez  et 

al.71 Collins and co-workers120 have developed the systematic molecular fragmentation (SMF) method in order 

to describe large molecular systems with accurate QM methods. Smaller subsystems are treated with a high 
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level of accuracy. This accuracy is, in principle, retained by incorporating non-bonded interactions between the 

fragments using model potentials.121   

 A related, but somewhat different approach has been developed and implemented by several groups in order 

to expand the size of accessible species and active species in multi-configurational self-consistent field 

(MCSCF) methods, in particular the complete active space (CAS) SCF approach. Among the most well known 

of these methods are the restricted active space (RAS) SCF method, developed by Roos and co-workers,122 the 

quasi (Q) CAS method of the Hirao group,123 and the occupation restricted multiple active space (ORMAS) 

method developed by Ivanic.124 The general philosophy of these methods is to divide a large (possibly 

computationally intractable) CAS active space into logically determined sub-spaces, so that each subspace is 

amenable to MCSCF calculations. ORMAS is the most general of these methods and subsumes the others. 

Because MCSCF calculations account only for static correlation, it is necessary to add dynamic correlation, 

either variationally via configuration interaction (multi-reference CI = MRCI) or perturbatively (MRPT). MRPT 

is the computationally more efficient approach. Therefore, the RASPT2 method125 and ORMAS-PT2 method126 

have recently been introduced.  

 Another class of methods that is related to fragmentation is the use of LMOs to reduce the scaling of (most 

commonly) correlated electronic structure methods. This is accomplished by first performing a Hartree-Fock 

(HF) calculation on the entire system and localizing the orbitals.  In this sense the “local orbital” approach is 

distinct from most fragmentation methods in that the latter first separate the system into separate physical 

collections of atoms, and subsequently perform explicit calculations on only one fragment at a time, not the 

entire system. Most local orbital methods127 have built upon the beautiful early work of Pulay and co-

workers128,129 whose work primarily addressed second order perturbation theory (MP2). Many others have 

contributed to this field, most notably Werner and co-workers130 (MP2 and coupled cluster (CC) methods), 

Head-Gordon et al.131 (MP2 and CC methods), and Carter and co-workers132 (multi-reference configuration 

interaction). A very recent method developed by the Piecuch group133 called cluster in molecule (CIM) is 

generally applicable and can be used as a multi-level method, in which different parts of a system can be treated 

with different levels of theory (Werner and co-workers134 used MP2 for small contributions in their local CC 

method).  

 Another important example is the incremental method,17,135 which is mainly used to estimate the correlation 

energy in periodic systems, similar to other local orbital methods, with the important distinction that a many-

body expansion in terms of orbital contributions is used. This is conceptually similar to the expansion used in 

some fragment methods, although molecular applications have also been reported.136,137,138 Manby et al. 139 

suggested a hierachical method for the additive calculation of the properties of clusters using edge, corner, 

surface and bulk unit energies, and compared their method to the incremental method.140  
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 A number of fragment-based methods represent a important class of linear scaling methods (sometimes 

called order N, O(N) methods), which are a thriving field of current research.141,142 Strictly speaking, it is often 

not entirely clear that a particular method really scales linearly, and a description like “nearly linear scaling” 

may be more appropriate (as discussed by Nagata et al. in chapter 2 of Ref. 141) 

 Another group of approaches, only briefly mentioned is related to the integrated MO and molecular mechanics 

(MM), IMOMM method,143 its later extension our own n-layered integrated molecular orbital and molecular 

mechanics (ONIOM),144 methods known as integrated MO and MO (IMOMO),145 QM:QM,146 and multiple area 

QM/MM.147,148 Most of these methods compute the whole system at a low level and add higher level results for 

a selected part of the system. Some of the methods such as multiple area QM/MM147,148 and extended 

ONIOM149 can be considered fragment-based approaches.  

2. Methodologies  

 One can classify fragment-based methods in various ways. Fedorov and Kitaura223 suggested three categories: 

divide-and-conquer (DC),18 transferable approaches (SMF120) and methods based on many-body molecular 

interactions (FMO,58 MFCC117). The distinction between the latter two groups is in the way in which fragment 

interactions are added: the latter category typically has a simple many-body expansion inspired by the theory of 

molecular interactions;70 while the former group has a different recipe for taking into account these interactions. 

Fedorov and Kitaura also proposed the name of e pluribus unum for those methods in which the total properties 

are obtained by fragment calculations under the influence (for example, in the electrostatic field) of the whole 

system.  

 Li et al.118 grouped fragment methods into density matrix (DC, 18 ELG,20 MFCC117) or energy based 

approaches (IMiCMO, 150 MFCC, 117 SMF, 120 MTA119). The density based methods compute the density of the 

whole system using fragments, followed by the calculation of the energy; the energy based methods compute 

the energy directly from fragment energies avoiding the expensive step of calculating the energy from the 

density of the whole system. For some methods, like MFCC, it is possible to either compute the energy directly 

or to first obtain the density and then the energy; thus MFCC belongs to both categories. 

 Suárez et al.71 classified fragment-based methods into two main groups, those using (a) overlapping 

fragments (MTA, 119 MFCC, 117 FEM71 and SMF120) and (b) disjoint fragments (FMO, KEM). The main idea of 

this classification is in the fragment definition: whether an atom is assigned to a single fragment as in (a) or can 

be found in several, as in (b).  

 Figure 1 illustrates an elaboration and generalization of the classification introduced by Li et al.118 The 

purpose of this modification is to introduce a more elaborate division than the two groups that were used in the 

original classification, and to extend it to apply when a property other than the energy is directly computed from 

the fragment calculations. The energy-based group is renamed the one-step group, which refers to the direct 
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calculation of total properties from the fragment-derived values. This approach allows one to include properties, 

other than energy, such as the density and properties linear in the density (i.e., one-electron properties) to be 

included in the classification. The distinctive feature of the one-step group is that the total properties are 

obtainable directly from fragment calculations. That is, the one-electron properties from the density can be 

rewritten as an appropriate combination of fragment properties.  

 The two-step group, which corresponds to the density based method of Li et al.,118 includes methods which 

consist of two steps: (1) computing some total property from piecewise values (usually, the electron density); 

(2) calculating a related total property dependent on the one determined in the first step in a nonlinear way 

(usually, the total energy). For methods in this group it is necessary to perform calculations for the whole 

system at once, which imposes various limitations and leads to complications.  

  Each of the one and two-step groups can be further divided to reflect the manner in which the QM 

calculations on the combinations of fragments are performed. In the 1-body methods, where “1-body” refers to 

fragments, there are no QM calculations of the conglomerates of fragments. Instead, often either force field 

derived terms are added (e.g., X-Pol46) or perturbation theory is used based on the wave functions of fragments 

as the starting point (MCF48). In the many-body subgroup pairs, triples or large unions of fragments are 

computed, whereas in the conglomerate subgroup different principles are used to combine fragments into 

unions, e.g., based on the cardinality (MTA method) or buffer zone (DC method) to include a certain number of 

atoms around each fragment. The many-body group eventually can be said to be inspired by the theory of 

molecular interactions70 with its many-body expansion and typically contains many-body energy corrections 

such as EIJ-EI-EJ, for dimer IJ corrections to monomers I and J. On the other hand, the conglomerate group uses 

different recipes for the construction of groups of atoms to be computed.  

 Several families of methods, namely, FMO, MFCC, and KEM have variants that fall into different 

categories. For instance, in the FMO-MO method (introduced below), an FMO calculation is performed in the 

first step, whereas the second step is performed as in a full ab initio QM calculation for the whole system, 

corresponding to one SCF iteration. In FMO-based NMR calculations, denoted FMO1 (merged), one first 

performs self-consistent calculations on fragments (FMO1). This is followed by the calculation of NMR shifts 

for a large “superfragment” composed of a central fragment I and all fragments within a desired radius around it 

(I consequently goes over all fragments). This is the reason that some methods appear in several different 

groups.  

2.1 QM-based Force Fields 

 Quantum mechanics calculations are often used to assist the development and parametrization of modern 

polarizable force fields. However, while it is straightforward to extract the electrostatic point charges or 

multipoles from electronic structure calculations on small fragments or molecules, rigorous formulation of 
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accurate but computationally inexpensive ways to model exchange-repulsion self-consistent induction, 

dispersion, and charge-transfer terms can be quite intricate, especially in the interfacial region between QM and 

the force field. Therefore, various approaches have been suggested and tried over years, often combining 

quantum-mechanically-based terms (typically Coulomb and polarization) and parameterizing the rest of the 

potential.  

 For example, in AMOEBA (atomic multipole optimized energetics for biomolecular applications) force 

field, multipoles on atoms (up to quadrupoles)77 are obtained from the distributed multipolar analysis (DMA) 

and (experimental) isotropic atomic polarizabilities with Thole’s damping functions are used.151 Also, in 

AMOEBA the Van der Waals R-7-R-14 term is parameterized to reproduce experimental gas phase and condense 

phase data. Parameters of bonded terms in AMOEBA are also obtained by fitting to experimental data. In the 

NEMO (non-empirical molecular orbital) force field for water152, multipoles up to quadrupoles are also used to 

calculate Coulomb interactions, while atomic polarizabilities are obtained by solving coupled HF equations. 

Dispersion is fitted to an analytic R-6 expression with exponential damping, while the exchange-repulsion is 

represented by a sum of exponential and R-14 terms.  

 The essence of the direct reaction field (DRF) approach153 of van Duijnen is an explicit evaluation of the 

polarization (induction) term using atomic polarizabilities and Thole’s damping functions. The Coulomb term is 

evaluated using screened charges; dispersion energy is calculated using the Slater-Kirkwood expression154 with 

atomic polarizabilities, and the repulsion component is taken to be proportional to the dispersion scaled by Van 

der Waals atomic radii.  

 In the SIBFA (sum of interactions between fragments ab initio) force field, 76,155,156,157,158,159 developed by 

Gresh and coworkers, the interaction energy between fragments is a sum of Coulomb, polarization, repulsion, 

dispersion, and charge-transfer components. The electrostatic term is computed using distributed multipoles up 

to quadrupoles centered at atoms and bond barycenters. The multipoles are obtained using the procedure 

developed by Vigné-Maeder and Claverie.160 The Coulomb term is augmented by an explicit penetration 

contribution.161,162 The repulsion term is formulated as a sum of bond-bond, bond-lone pair, and lone pair-lone 

pair interactions expressed as S2/R terms. Here, S is an approximation of the overlap between LMOs of the 

interacting partners; R is the distance between the LMO centroids. The S2/R2 term was added to improve the 

accuracy of the repulsion term.162 Polarization energies are obtained by using permanent multipoles (the same 

as those that appear in the Coulomb term) and distributed polarizability tensors computed at the bond 

barycenters and on the heteroatom lone pairs. Polarization interactions are screened by Gaussian functions that 

depend on the distance between the interaction centers. The dispersion term is described as a sum of R-6, R-8, 

and R-10 contributions,163 calibrated on the basis of a SAPT analysis. The uniqueness of SIBFA is in the 

treatment of the charge-transfer interactions that are modeled following the Murrell formulation164  using the 

ionization potential of the electron donor and the electron affinity and ‘self-potential’ of the electron 

acceptor.157,156 The charge transfer term is essential for describing polycoordinated complexes of cations.165,159  
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2.1.1 Effective Fragment Potential Method 

 The original idea of the effective fragment potential method73,166,167 (EFP) was to describe aqueous solvent 

effects on molecules of biological interest, in which the solute was described by some QM level (usually HF) 

and the solvent molecules were represented by EFPs. The EFP potential was represented as series deduced from 

the long-range (in powers of (1/R) Coulomb operator) and short-range (in powers of intermolecular overlap S) 

perturbation theory. In this formulation each water molecule is represented as a fragment of fixed geometry 

with a set of parameters deduced from ab initio calculations. In this original implementation,166,167 now called 

EFP1, the interaction energy between water molecules consists of Coulomb, polarization, and repulsion terms: 

EEFP1 = ECoul + Epol + E rep                                                                                                                                 (1) 

In the presence of a quantum region, the total energy of the QM/EFP1 system can be written as: 

EQM−EFP1 = Ψ H QM +V Coul +V pol +V rep Ψ + ECoul + Epol + E rep                                                           (2) 

VCoul, Vpol, and Vrep are one-electron contributions to the (unperturbed) quantum Hamiltonian HQM due to 

Coulomb, polarization, and repulsion terms of EFP1 water fragments. ECoul, Epol, and Erep are fragment-fragment 

Coulomb, polarization, and exchange-repulsion energies, respectively. 

 The Coulomb ECoul term is evaluated using the classical multipoles up to octopoles centered at each atom 

and bond midpoint. The distributed multipole moments are obtained using the Stone distributed multipole 

analysis;168,169 each water fragment has five points with distributed multipoles. The fragment-fragment Coulomb 

interactions consist of charge-charge, charge-dipole, charge-quadrupole, charge-octopole, dipole-dipole, dipole-

quadrupole, and quadrupole-quadrupole terms. The Coulomb contribution VCoul from a multipole point k to the 

ab initio Hamiltonian consists of four terms due to EFP charges q, dipoles µ, quadrupoles Θ, and octopoles Ω: 

Vk
Coul(x) = qkT (rkx )− µα

kTα (rkx )
α
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T , T
α

, T
αβ

, and T
αβγ

 are electrostatic tensors of zero, first, second, and third rank, respectively; x is the 

electron coordinate; rkx is the distance between the position of electron x and multipole point k. 

To account for short-range charge-penetration effects, the charge-charge fragment-fragment terms and the 

charge-based term in the Hamiltonian are augmented by Gaussian like damping functions of the form 

1− β exp −αR2( ). The α and β parameters were determined from a fit of damped multipole potential to the 

quantum Hartree-Fock potential on a set of points around the fragment. R is the distance between two multipole 

points or between a multipole point and an electron.  
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 The fragment polarization energy Epol is evaluated as an interaction of induced dipoles of each fragment 

with the static field due to the Coulomb multipoles and the induced field due to the induced dipoles of the other 

fragments. The induced dipoles originate at the centroids of localized molecular orbitals (LMO), where 

(anisotropic) distributed polarizability tensors are placed. Each water fragment has five distributed polarizability 

points: at the oxygen (inner shell), the centers of the two O-H bonds, and at the centroids of the two lone pairs.  

The polarization energy of the fragments is calculated self-consistently using an iterative procedure. Thus, 

polarization accounts for some many-body effects that are important in aqueous systems.170  

 When a quantum region is present in the system, the induced dipoles of the fragments also interact with the 

electron density and nuclei of the quantum part, by means of Vpol a one-electron contribution to the quantum 

Hamiltonian: 

 
Vk

pol(x) =
1
2

µα
ind,k + µα

ind,k( )Tα (rkx )
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∑ ,                                                                                                          (4) 

where indµ  and  µ
ind

 are the induced and the conjugate induced dipoles at the polarization point k. The total 

electric field acting on each fragment now consists of static and induced fields (due to the multipoles and 

induced dipoles of the other fragments), as well as fields due to the electron density and nuclei of the ab initio 

part. The total polarization energy of the QM/EFP1 system is: 
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mult,k + Fα
nuc,k( )

α

x,y,z

∑
k
∑ +

1
2

µα
kFα

ai,k

α

x,y,z

∑
k
∑ ,                                                                            (5) 

where Fmult is the field due to the static multipoles on the EFP fragments, and Fai and Fnuc are fields due to the 

density and the nuclei of the quantum region. Polarization in a QM/EFP system is computed self-consistently 

using a two-level iterative procedure. The lower level, which takes care of the convergence of the induced 

dipoles, is identical to the fragment-only system. The wave function is kept frozen at this level. The lower-level 

iterative procedure exits when the induced dipoles are self-consistent and are consistent with the frozen ab initio 

wave function. At the higher level, the wave function is updated based on the converged values of the induced 

dipoles from the lower level. Convergence of the upper level is determined by convergence of wave function 

parameters (molecular orbital coefficients).  Convergence of the two-level iterative procedure yields self-

consistent induced dipoles and the ab initio wave function.    

 The remaining contribution to the ab initio-EFP interactions accounts for exchange-repulsion and charge 

transfer effects. This Vrep term is modeled in the form of Gaussian functions: 

Vk
rep (x) = βi,k exp(−αi,krkx

2 )
i=1

2

∑                                                                                                                         (6) 
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where k represents repulsion centers (atoms and center of mass), rkx is the distance between a repulsion center 

and an electron. Parameters α and β are obtained by fitting the repulsion term to the difference between the HF 

energies of water dimers and a sum of electrostatic and polarization terms. A total of 192 water dimers were 

used in the fitting procedure. Fragment-fragment repulsion energy Erep is modeled similarly to the ab initio-

EFP1 repulsion. However, a single exponential function has been used instead of Gaussians.  

 The EFP1 water model has been combined with various wave functions in the quantum region, including 

HF, DFT, MCSCF and MP2. Excited state methods such as configuration interaction with single excitations 

(CIS171), TDDFT172, and MRPT173 have been interfaced with EFP1 as well. The general EFP2 model (see 

below) is interfaced with CIS(D)174 (CIS with perturbative double excitations) and equations of motion (EOM)-

CCSD.175,176 Additionally, the EFP1 model has been combined with the FMO method.177, 178 The interface 

between the EFP1 method and the polarized continuum model (PCM) has been also developed.179,180,181,182 In 

order to describe heterogeneous catalytic systems in the presence of a solvent (the liquid-surface interface), an 

interface between the EFP method and the universal force field has been developed.183 The implementations of 

the EFP1 and QM/EFP1 methods have been efficiently parallelized.184   

 Analytic gradients have been developed for the EFP1 and QM/EFP1 models166,167 and the gradients have 

been used extensively in studies of water clusters and bulk,185,186,187,188 aqueous reactions,189,190 amino acid 

neutral-zwitterion equilibria,179,191 and photochemistry in water.171,172 

 To summarize, the EFP1 water potential described above has proven to be a robust and useful model for 

treating interactions in water. However, the main drawback of the original version of the EFP1 model is that it 

is fitted to HF or DFT energies of water dimers. Therefore, this potential does not include long-range 

correlation effects such as dispersion. In order to improve the accuracy of the water model, two more variants of 

EFP1 have been developed. In one, referred to as EFP1/DFT192, the B3LYP functional was used to obtain EFP 

Coulomb and polarization parameters, and the repulsion term was fitted to reproduce the B3LYP/DH energies 

in dimers. In the EFP1/MP2 variant193, the potential is based on the MP2 method, i.e., the multipoles and 

polarizability tensors are obtained from MP2 calculations on a water monomer, and the repulsion is fitted to HF 

dimer energies. In order to incorporate correlation effects, an additional dispersion term of form 

Edisp =
C6

R6 +
C8

R8
 is added to fragment-fragment interaction energies. The C6 and C8 coefficients were obtained 

from a fit to MP2 correlation energies of the dimers.  The original HF-based potential is now referred to as 

EFP1/HF.    

 To extend the EFP idea to a general solvent, one needs to design a way to accurately model exchange-

repulsion and charge-transfer interactions without extensive fitting. Moreover, the dispersion term must be 

added to the model for a balanced description of π-stacking, Van der Waals complexes, and other weak 
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interactions. This has been realized in a general formulation of the EFP method, often called EFP2194,195,196. The 

fragment-fragment energy in the EFP2 method consists of the following terms: 

EEFP2 = ECoul + Epol + E exrep + Edisp + E ct ,                                                                                                     (7) 

where Eexrep is a general (not-fitted) exchange-repulsion energy, Edisp and Ect are dispersion and charge-transfer 

energies, respectively. The EFP2 potential can be built for any solvent molecule in a MAKEFP run in 

GAMESS. However, solvents with flexible degrees of freedom (for example, long alcohols or chain 

hydrocarbons) should be treated with care since EFP is inherently a rigid-body model.  

 The Coulomb ECoul and polarization Epol terms in the EFP2 method are obtained similarly to those in the 

EFP1 models. That is, the multipoles at the atoms and bond-mid-points are generated by the DMA, and 

distributed polarizability tensors are calculated at the LMO centroids by using the coupled perturbed HF 

(CPHF) approach. Since the general EFP2 potential is intended to be used for various species, including 

biologically relevant highly polar and charged fragments, such as NH4
+, H3O+, OH-, F-, Cl-, metal cations, etc., 

special care should be taken for short-range and quantum effects. Therefore, several damping formulas have 

been developed and investigated in combination with the Coulomb and polarization energies.197,198,199 In 

particular, Coulomb interactions at short distances can be damped either by exponential damping function 

applied to charge-charge term only197: 

fkl
ch−ch =1− αl

2

αl
2 −αk

2 exp −αkRkl( )− αk
2

αk
2 −αl

2 exp −αlRkl( ) ,                                                                      (8) 

or by using a set of exponential-based damping functions applied to higher order Coulomb terms as well 

(charge-dipole, charge-quadrupole, dipole-dipole, dipole-quadrupole)198,199. Damping parameters α at each 

multipole distributed point (k or l in the above equation) are obtained in a MAKEFP run by fitting the damped 

classical Coulomb potential to the quantum (Hartree-Fock) potential on a set of points around the fragment. 

Another option is to estimate the short-range charge penetration energy using the spherical Gaussian overlap 

(SGO) approximation200,199: 

Ekl
pen = −2 1

−2 ln Skl

"

#
$$

%

&
''

1/2
Skl

2

Rkl

                                                                                                                            (9) 

 Damping of the polarization energy is extremely important in order to avoid the “polarization catastrophe” 

that may happen due to breaking the multipole approximation at short separations between the fragments. 

Exponential and Gaussian damping functions have been investigated199; damping parameters for these functions 

(one parameter per polarization point, i.e., a LMO centroid) have been set to predefined values that were picked 

to be the same for all fragment types and all polarization points.  
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 The dispersion energy between fragments is calculated using the leading induced dipole-induced dipole 1/R6 

term.201 An empirical correction for the next 1/R8 term is added as one-third of the 1/R6 term. The resulting 

formula for the fragment-fragment dispersion energy is: 

Edisp =
4
3

C6,kl

Rkl
6

k ,l
∑                                                                                                                                             (10) 

where k and l are distributed (LMO) dispersion points on fragments A and B, respectively ( A ≠ B ), Rkl is the 

distance between these points, and C6 is obtained using the following integration:201,82 

C6,kl = α k (iν )α l (iν )dν
0

∞

∫ ,                                                                                                                           (11) 

where )(lkα is the 1/3 of the trace of dynamic (frequency dependent) polarizability tensor at the point k (or l), 

respectively. The integration is performed on the fly between all pairs of dispersion points of all fragments, 

using a 12-point Gauss-Legendre quadrature. Distributed dynamic polarizability tensors on each fragment are 

obtained from time-dependent HF calculations within the MAKEFP run in GAMESS. 

 Dispersion interactions are corrected for charge penetration effects. Two variants of damping functions have 

been employed within the EFP2 method. One is the Tang-Toennies damping formula202 with damping 

parameter set to β=1.5201: 

fkl
TT = 1− exp(−βRkl )

βRkl( )n

n!n=0

6

∑
$

%
&&

'

(
)) .                                                                                                            (12) 

Another damping formula199 uses the intermolecular overlap integrals Skl between LMOs k and l on fragments 

A and B: 

fkl
S =1−Skl

2 1−2 ln Skl + 2 ln2 Skl( )                                                                                                             (13) 

The latter formulation is parameter free and was shown to provide accurate dispersion energies up to very short 

(almost valence) separations between the fragments. 

 The exchange-repulsion energy in EFP2 is derived from the exact HF expression for the exchange-repulsion 

energy of two closed-shell molecules. Truncating the sequence at the quadratic term in the intermolecular 

overlap and applying an infinite basis set and the spherical gaussian overlap approximation203 lead to the 

following expression for the exchange-repulsion energy:204,205 
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E exrep =
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where i, j, k, and l are LMOs; I and J are nuclei, S and T are the intermolecular overlap and kinetic energy 

integrals, respectively; and F is the intramolecular Fock matrix. The overlap and kinetic energy integrals are 

calculated on the fly between each pair of LMOs on different fragments A and B. The intramolecular Fock 

matrix elements are pre-calculated as part of the MAKEFP run.   

 The charge transfer fragment-fragment energy Ect is derived by considering the interactions between the 

occupied valence molecular orbitals on one fragment with the virtual orbitals on another fragment.206,207 The 

charge transfer term results in significant energy-lowering in polar or ionic species. An approximate formula, 

based on a second order perturbative treatment of the intermolecular interactions, uses canonical HF orbitals of 

individual fragments and a multipolar expansion of the electrostatic potential V of the fragment. The charge 

transfer energy of fragment A induced by fragment B is approximated as: 
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where VB is the electrostatic potential on fragment B; i, j, n, and m are canonical orbitals. A similar expression 

for the energy EB(A)
ct  is obtained when fragment A induces charge transfer in fragment B. Charge transfer is 

treated as an additive pairwise interaction, so the total charge transfer energy is a sum of the EB(A)
ct  and EA(B)

ct  

terms of all pairs of fragments A and B. The charge transfer term is the most computationally expensive term in 

EFP2; therefore, since it is relatively small in non-polar or weakly polar systems, the charge transfer interaction 

is often omitted in EFP2 calculations. 

 Exact analytic gradients are available for all EFP2 fragment-fragment terms.208,209 Similar to the EFP1 

models, the general EFP2 potential can be used in Monte Carlo and molecular dynamics simulations. It was also 

shown that in Monte Carlo simulations, EFP can serve as an accurate importance function for a QM/EFP 

potential.210 The general EFP2 model is also used in combination with the SMF method, as discussed below. A 

hybrid EFP-FMO method, called EFMO, is also described below. 
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 A general EFP2 ab initio-fragment interface is under development. The Coulomb and polarization quantum-

EFP terms are treated similarly to the QM-EFP1 scheme, through inclusion of one-electron EFP terms into the 

QM Hamiltonian. Recently, a formula for the exchange-repulsion energy between quantum and EFP regions has 

been derived and implemented211. Implementation of the exchange-repulsion gradients is in progress, as is the 

formulation of the ab initio-EFP dispersion interaction.  

 In order to extend the general EFP model to covalently bound systems, a covalently bound ab initio/EFP 

interface has been developed212. The method is similar in spirit to that of Assfeld and Rivail213 and is based on 

defining a buffer region that separates the QM and EFP parts. The buffer region consists of several LMOs that 

are kept frozen in the EFP calculations. In order to avoid variational collapse of the ab initio wave function into 

the buffer region, MOs of the ab initio part are kept orthogonal to the buffer LMOs. The buffer region creates a 

necessary separation between the ab initio and EFP regions such that the QM-EFP interactions can be 

considered to be non-bonded interactions and can therefore be treated in the same way as other EFP-QM 

interactions.  

 A variant of a flexible EFP potential has been developed by Nemukhin and co-workers214,215 in which a 

covalently bound system (such as a polypeptide) is divided into small EFP fragments. Ab initio-EFP 

interactions are described in a similar manner to those in a QM-EFP1 model (with Coulomb, polarization, and 

repulsion terms), while fragment-fragment interactions are described at the level of a customary force field. 

This allows flexibility in a covalently bound molecule and optimization of internal degrees of freedom. 

2.1.2 Explicit Polarization Potential 

 The original formulation of X-Pol by Gao46,52 was called MODEL and formulated for homogenous clusters 

representing liquids. In 2007, MODEL was extended by Xie and Gao216 to covalently connected fragments with 

the use of the generalized hybrid orbital method (GHO).217 From the beginning, X-Pol was envisioned as the 

next generation force field, based on QM calculations of fragments, and it was suggested that some parameters 

are needed for the implementation. X-Pol is typically used with semiempirical methods that describe fragment 

wave functions. The distinct feature of the X-Pol method is the incorporation of many-body polarization 

through performing a double SCF calculation; that is, self-consistent calculations of fragments in the 

electrostatic field of the other fragments (similar to the EFP approach). In the X-Pol method, the electrostatic 

field `is usually represented by the field of Mulliken charges (often scaled by an empirical factor). 

 The basic equations of X-Pol can be summarized as follows. The total energy of the system, Etot, divided 

into N fragments, is defined relative to the sum of the energies of non-interacting fragments 0
IE  

Etot = Φ Ĥ Φ − EI
0

I=1

N

∑                                                                                                                                 (16) 
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where the total Hamiltonian is given by 

Ĥ = Ĥ I
0

I=1

N

∑ +
1
2

Ĥ IJ
J≠I
∑

I=1

N

∑                                                                                                                               (17) 

and the total wave function F is the Hartree product of fragment wave functions YI. 

Φ = Ψ I
I=1

N

∏                                                                                                                                                        (18) 

0ˆ
IH  is the electronic Hamiltonian of isolated fragment I, and the interaction potential is expressed as  

Ĥ IJ = −
qβ

J

ri
I − rβ

J
β=1

B

∑
i=1

2M

∑ +
Zα

I qβ
J

rε
I − rβ

J
β=1

B

∑
α=1

A

∑ + EIJ
vdW                                                                                           (19) 

The first term in Eq. (19) describes the interaction of electrons i in fragment I with partial charges q on atoms b 

in fragment J. The second term in Eq. (19) describes the interaction of nuclear charges Z on atoms a in fragment 

I with partial charges on atoms b in fragment J. The third term describes the van der Waals (vdW) interaction 

energy usually represented by the Lennard-Jones potential between atoms in fragments I and J.  

 In applying the X-Pol method, one performs SCF calculations on the individual fragments in the electrostatic 

field of the point charges due to the other fragments, determined using the electron density of the other 

fragments, until full self-consistency is reached. The fragment boundaries are treated with frozen orbitals, 

whereby the four bonds on the typical boundary carbon atom are divided equally (meaning two bonds to each 

fragment) between two fragments. The first group of orbitals, which is inside the fragment, is fully SCF-

optimized, while the other group of orbitals that belong to other fragments is frozen and contributes to the total 

Fock matrix and density, while remaining frozen. Polypeptides are usually divided at Ca atoms, which are the 

boundary atoms in X-Pol. Thus, the fragments correspond to peptide units as defined by IUPAC218 rather than 

residues. 

   In 2008, Xie et al. 219 modified the formulation of X-Pol, in order to obtain rigorously analytic gradients. The 

modification was necessitated by the use of the Mulliken charges to represent the external field. In this method, 

individual fragment Fock operators are modified with additional terms derived from the variation of the total 

electronic energy with respect to the electronic states of all fragments. In 2009, Song et al. 220 extended the RHF 

version of X-Pol to DFT. 

   In 2010, Cembran et al.221 proposed the X-Pol-X method, which adds inter-fragment exchange interactions. 

Different from the earlier X-Pol, this new formulation appears to belong to the two-step category in the 
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classification of fragment-based methods. In the X-Pol-X formalism, the fragments in X-Pol are replaced by 

blocks, which may or may not be associated with specific groups of atoms, although the practical 

implementation still uses fragments as blocks. The blocks are described by block-localized wave functions 

(BLW). The total X-Pol-X energy is given by: 

EX−Pol−X = Dµν Hµν + Fµν( )
µν

K

∑                                                                                                                       (20) 

where K is the total number of basis functions in the whole system and H and F are the one-electron and Fock 

matrices, respectively, as in an ab initio calculation for the whole system. The density matrix is defined as 

( ) TT CCRCCD ~~~~ 1−
=                                                                                                                                         (21) 

In Eq. (21) C~  is the matrix of occupied MOs, with non-zero blocks on the diagonal. Each block in the D matrix 

corresponds to the respective block in X-Pol-X. R is the matrix of the interblock AO-based overlap integrals (a 

and b denote blocks): 

Rµν
ab = χµ

a χν
b                                                                                                                                                  (22) 

The interfragment exchange is apparently accounted for through the block-orthogonalization constraint 

 
CT R C( )−1

 although the interblock potential is described with Coulomb terms. 

 Practically, one still has to solve Hartree-Fock equations for blocks, with the appropriately constructed Fock 

matrix.221 In X-Pol-X, in contrast to X-Pol, the free block energies are not subtracted from the QM energy as in 

Eq. (16). This suggests that X-Pol-X has become more sophisticated than a “next generation force field”. 

 In 2010, Gao et al.72 proposed the generalized X-Pol method, GX-Pol. This approach has two formulations, 

based on (a) consistent diabatic configurations (CDC) and (b) variational diabatic configurations (VDC). The 

two approaches have some similarity with (a) the valence bond (VB) (or MCSCF) and (b) CI theories, 

respectively. The analogy is not complete, since the VB, MCSCF and CI methods all account for the occupation 

of virtual orbitals and describe electron correlation, whereas GX-Pol effectively accounts for quantum effects 

(such as charge transfer) between fragments in the RHF fashion. This GX-Pol approach is somewhat similar to 

the MP2 and CI in vibrational SCF (VSCF),222 which accounts for the anharmonicity rather than the electron 

correlation. 

 The CDC approach is based on pairs of blocks X2; the energy is obtained by 
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X2X2X2
ˆ ΘΘ= HE                                                                                                                                      (23) 

where the wave function for M blocks is given by 

ΘX2 = cabΨab
A

b=a+1

M

∑
a=1

M

∑                                                                                                                                     (24) 

The pair wave functions in Eq. (24) are 

( )Mab
A
ab

A
ab AR Φ…Φ…Φ=Ψ 1

ˆ ,                                                                                                                  (25) 

where Â  is the antisymmetrizer and A
abR  is the normalization constant. abΦ  is the wavefunction of the pair of 

blocks (ab). The coefficients abc  and other variables in the block wave functions are determined self-

consistently. An extension to an arbitrary combination of blocks (i.e., more than pairs) was also proposed. 

 In the VDC approach, the energy E is obtained by diagonalizing a CI-like secular equations with each 

matrix element such as HI,J corresponding to the combination of pairs I=(ab) and J=(rs): 

H11 − ES11 … H1,M 2 − ES1,M 2

… … …
HM 2,1 − ESM 2,1 … HM 2,M 2 − ESM 2,M 2

= 0                                                                                      (26) 

In Eq. (26) M2=M(M-1)/2 is the total number of dimer configurations A
abΨ , and the corresponding overlaps 

and Hamiltonian matrix elements are given, respectively, by 

Sab,st = Ψab
A Ψ st

A                                                                                                                                            (27) 

Hab,st = Ψab
A Ĥ Ψ st

A                                                                                                                                    (28) 

It should be noted that CDC and VDC give different energies, like CI and MCSCF do for electron correlation. 

This new formulation of GX-Pol can describe charge transfer between blocks, previously not considered in X-

Pol. As for X-Pol-X, GX-Pol is a more general method than the original X-Pol. 

2.2 Fragment Molecular Orbital Methods 

 Since the original formulation58 during the last century, the FMO method223,224 has undergone considerable 

development extending the applicability of the method to a wide variety of types of systems. A review of the 
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FMO method in 2007 by Fedorov and Kitaura225 was followed by a book226,227 summarizing the activity of a 

number of research groups developing and applying FMO.   

 The gist of the FMO method is to incorporate high order interactions into low order expansions in terms of 

fragments, inspired by molecular interaction models.70 In particular, the electrostatic interaction is treated at the 

full N-body order (M=N), where N is the total number of fragments; this is accomplished by incorporating the 

Coulomb field of all N fragments into the self-consistent monomer SCF cycle (see introduction for a more 

detailed discussion), while non-electrostatic interactions (exchange-repulsion, charge transfer and dispersion) 

are treated at a lower order, typically M=2 or 3. The fragments, their pairs (M=2: FMO2) and triples (M=3: 

FMO3) are explicitly treated quantum mechanically in the presence of the Coulomb (i.e., electrostatic) field of 

the whole system. In this manner, the low order non-electrostatic interactions are coupled to the electrostatics. 

In most systems, this is a reasonable approximation, because the non-electrostatic interactions are typically 

shorter-range.  

 Beginning with this assumption, it becomes acceptable to break a system into many smaller, localized pieces, 

treating the long-range effects of the full system using only a Coulomb operator.  The driving motivation for 

this approximation and subsequent fragmentation is to find a route to drastically reduce the computational cost 

required for calculations.  Even when the most efficient algorithms are used, for example, with MP2 or 

CCSD(T), the system size in terms of basis functions is the limiting factor.  It is this roadblock in current ab 

initio methods that the FMO method attempts to overcome, first by reducing computational cost through 

fragmentation as mentioned above, and second by employing multi-level parallelization through the use of the 

generalized distributed data interface (GDDI).1 It is this combination of theoretical approximations and 

exploitation of modern computational resources that has allowed the FMO method to perform all electron 

calculations on over 20,000 atoms.228  

 Fragment creation in the FMO method involves the detaching of bonds electrostatically, assigning two 

electrons from the broken bond to one fragment and none to the other.  Where these bond detachments occur is 

left up to the user, relying on their own chemical intuition and knowledge of the system being investigated.  A 

general guideline is to avoid detaching bonds involved in a considerable electron delocalization, e.g., within 

benzene rings. There are well-established standard fragments for polypeptides (fragmented at Ca atoms), 

nucleotides and saccharides. Metal ions have very considerable charge transfer to solvent229 and represent an 

example of the need to define large fragments. When fragmenting a chemical system in this manner, the charge 

on fragments is not affected by bond detachment, so a negatively charged residue retains this same negative 

charge after fragmentation. The technical details of this are well illustrated elsewhere.226,373 Note that the FMO, 

ELG and X-Pol methods appear to be among the few fragment methods that do not add caps (hydrogen or more 

involved) to detached bonds.  
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 The detachment of bonds in the FMO method can be done in two ways. In the original method, hybrid 

orbital projection (HOP) operators230 are used to properly divide the variational space for the atom from which a 

bond is detached, because this atom has to be present in two fragments: This atom is present in one fragment 

just to describe the detached bond; the same atom is present in the second fragment since it contains the rest of 

the electrons that “belong” to that atom. Of course, when a bond is fragmented, there are two atoms (one at each 

end of the bond) that must be treated in this manner. This procedure is readily accomplished with projection 

operators, based on precomputed hybridized orbitals (e.g., sp3) for the atoms at the ends of the fragmented bond. 

In this method, often referred to as the HOP method, there are no restrictions on the variational optimization of 

the occupied orbitals of the fragments, in contrast to the second approach described in the next paragraph. This 

HOP method is considered to be a good approach for very polar systems such as proteins with charged residues. 

 The second detachment method is based on adaptive frozen orbitals (AFO), 231 in which the electron density 

distribution is precomputed for an approptiate MO in a model system that represents the system of interest. This 

pre-computed electron density is subsequently frozen in the FMO calculation. The treatment of the variational 

space division for each bond-detached atom in a fragmentation process is very similar to the HOP procedure, 

although the AFO procedure is achieved in practie in a different manner by Fock matrix transformations. 

However, an important distinction in the AFO procedure is that there is a restriction on the variation of the 

occupied fragment orbitals on the atoms that are involved in the fragmentation (the detached bond orbitals). 

This is particularly important for systems in which the detached bonds are inevitably close to one another. This 

happens in covalent crystals and related systems such as nanowires, for which the AFO procedure is preferred. 

The HOP method is based on projection operators in the general form φ φ . Such projection operators are 

used in many methods, for instance, in the core operator of model core potentials. 232 The FMO AFO approach 

was adapted from the EFP method, 212,233 which is in turn related to other methods, such as the GHO approach 

of Assfeld and Rivail.217 The AFO method is similar to these other methods in that the density of some occupied 

orbitals is frozen, but differs in the variational space division, as well in other technical details such as the 

method to obtain the bond orbitals, and their orthogonality.  

 HOP-based approaches require a separate preliminary generation of hybrid orbitals.  Although this is 

straightforward, it does add an extra step. To date, bonds have been detached at carbon and silicon234 atoms. On 

the other hand, in the AFO approach the frozen orbitals are generated on the fly. Therefore, in principle any 

system can be computed, although a practical implementation may require an elaborate algorithm to properly 

build a model system in complicated cases. The AFO-based FMO approach has been applied to bonds detached 

at carbon and silicon. 

 Now, consider a summary of the basic FMO formulation. For a more detailed mathematical description 

the reader is referred to chapter 2 of Ref 141. The basic algorithm for calculating the energy of a system using 

the FMO method is as follows (see Fig. 2):  
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(1) The initial electron density distribution is calculated for each monomer.  

(2) The monomer Fock operators are then constructed using these densities and the energy of each 

monomer is calculated in the Coulomb bath of the rest of the system.  

(3) Each of the monomer energies is iterated to self-consistency, leading to a converged ESP.  This step in 

FMO development is usually called the monomer SCF or SCC.  

(4) Fragment dimer calculations (FMO2) are then performed in the converged ESP of the rest of the system.  

Each dimer calculation is only performed once (not self-consistently).  

(5) Optionally, fragment trimer calculations (FMO3) are performed next in the converged ESP of the rest of 

the system.  Each trimer calculation is only performed once. 

   Within the two- and three-body FMO methods (FMO2 and FMO3, respectively), the total energy of the 

system can be written as: 

EFMO2 = EI +
I

N

∑ (EIJ −
I >J

N

∑ EI − EJ )         (29) 

EFMO3 = EFMO2

+ EIJK −EI −EJ −EK( )− EIJ −EI −EJ( )− EIK −EI −EK( )− EJK −EJ −EK( ){ }
I>J>K

N

∑
       (30) 

with monomer (I), dimer (IJ) and trimer (IJK) energies being obtained as described above.  The beauty of the 

seemingly simplistic form of Eq. (29) is its ability to encapsulate the concepts of properly handling many-body 

effects, shown in the diagrammatic treatment54 and the Green’s function formalism.235  

 The Fock equation used in the FMO method; 

 FxCx = SxCx ε x   x = I , IJ, IJK         (31) 

 Fx = Hx +Gx                                                                                                                                                    (32) 

is a modified version of the standard form. The modification adds a term, Vµν
x ,  to the one-electron Hamiltonian, 

 Hx , that represents the ESP calculated during the monomer SCF:   

 
Hµν

x = Hµν
x +Vµν

x + B µ φi
h

i
∑ φi

h ν                                                                                                        (33) 
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 In order to properly divide basis functions across fractioned bonds, a projection operator (HOP), 

B µ ϕ i
h

i
∑ ϕ i

h ν , is also added to the Hamiltonian, where i runs over hybrid orbitals h
iϕ  on all bond 

detached atoms in fragment x.  The constant B is chosen to be sufficiently large to remove the corresponding 

orbitals out of the variational space. Typically, B=106 a.u.. 

 One of the most important components of the FMO approach is the ESP, calculated during the monomer SCF 

process.  The ESP of the full system takes the form 

Vµν
x = (

K (≠x )
∑ uµν

K + vµν
K )                                                                                                                                       (34) 

uµν
K = µ (−ZA / | r − rA |)

A∈K
∑ ν                                                                                                                    (35) 

vµν
K = Dλσ

K

λσ ∈K
∑ (µν | λσ )                                                                                                                                (36) 

The term uµν
K  represents the nuclear attraction contribution to the energy, with the two-electron contribution 

represented by the second term vµν
K , expressed in terms of AOs m and n.  Both of these terms are calculated for 

each of the surrounding monomers K with electron density DK.   

 One might wonder if the addition of exchange integrals to the ESP in Eq. (36) could improve the results. 

Following an initial analysis235 in 2005, it was later concluded236 that due to the lack of orthogonality between 

fragment wave functions, the addition of exchange to ESPs in the SCC procedure actually decreases the 

accuracy. It is also possible to use point charges for all ESPs. This was shown to work particularly well for large 

basis sets by Fedorov et al.237 These authors also proposed to screen point charges by introducing an exponent 

prefactor to the point charge potentials in Eq. (35). Such screening was found useful in particular for the AFO 

scheme when ESP are represented by point charges, and for molecular clusters the effects of screening were 

found to be small. 

 Even using the formulation described thus far, computational cost can still become excessive due to the 

increasing cost of the two-electron term, vµν
K , contained in the ESP.  Additional approximations can be used to 

reduce this cost by creating a cut-off value Rapp.  Two-electron terms outside of this boundary can be treated in a 

more approximate manner; however, this additional layer of complexity can decrease the accuracy of the 

method.  This is due to the delicate balance among the approximations in different FMO terms.  
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 To understand this, consider a dimer IJ separated from a fragment L, which exerts an ESP upon I, J or IJ, 

schematically represented as IJ…L. If the distance between J and L is short (no ESP approximation), but that 

between I and L is long enough to apply the ESP approximation, there is a loss of balance, because in dimer IJ 

and monomer J the ESP due to L is computed without approximations, but in monomer I it is approximated. 

Consequently, pair corrections of the form EIJ − EI − EJ  include potentials due to L both with and without 

approximations. Due to the rapidly increasing number of dimers with system size, the error accumulates, 

creating a significant loss of accuracy in the total energy of the system. 

 To avoid the problems created by using distance based approximations to ESP, a reformulation of the 

energy expression is used238 that is equivalent to Eq. (29) but more accurate when using approximations to the 

ESP: 

EFMO2 = !EI
I

N

∑ + Δ !EIJ
I>J

N

∑ + Tr(ΔDIJV IJ )
I>J

N

∑                                                                                                (37) 

with the analogous expression239 for FMO3 being;  

EFMO3 = !EI +
I

N

∑ Δ !EIJ
I>J

N

∑ + ( !EIJK −
I>J>K

N

∑ !EI − !EJ − !EK −Δ !EIJ −Δ !EIK −Δ !EJK )+ Tr(ΔDIJV IJ )
I>J

N

∑

+ [Tr(ΔDIJKV IJK )
I>J>K

N

∑ −Tr(ΔDIJV IJ )−Tr(ΔDIKV IK )−Tr(ΔDJKVJK )]
      (38) 

where the new energy terms E′x are defined as the internal n-mer energies with the ESP contributions subtracted 

out; 

 !Ex = Ex −Tr(DxVx ) x = I , J, IJ                                                                                                                  (39) 

and ΔDx is the difference density matrix, defined as;  

ΔDIJ = DIJ −DI ⊕DJ = DIJ − DI 0
0 DJ

$

%
&
&

'

(
)
)

                                                                                           (40) 

   The above formulation in Eq. (37) allows the total energy to be calculated explicitly from only the dimer ESP 

VIJ. Eq. (38) contains both dimer and trimer ESPs, resulting in a more considerable effect of approximations on 

FMO3.  Approximations can be applied to monomers and dimers separately, with the dimer ESP directly 

contributing to the total energy. The monomer ESP determines the monomer electron densities, and therefore 

only contributes to the total energy indirectly.  
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   The total density can be calculated in the same manner as the total energy (cf. Eq. (29)), and one-electron 

properties such as multipole moments are straightforward to calculate once the total density is obtained. For 

example, Sekino et al. computed moments up to quadrupoles. 240 

 Eq. (38) includes both the two-body ΔDIJ and three-body ΔDIJK = DIJK − DI ⊕DJ ⊕DK difference 

density matrices.  This form of the energy equation, when applying three-body approximations to the ESP, 

partially retains the problem of ESP imbalance that the reformulation attempts to avoid.  This retention of error 

is due to the uniform application of the distance definition Rapp.  To avoid this the distance based approximation 

was also reformulated239 to treat the matrix elements of Vµν
x  block-wise so that;  

R
~

IJ ,L (µ,ν ) =

RI ,L forµ,ν ∈ I
RJ ,L forµ,ν ∈ J
RIJ ,L forµ ∈ I ,ν ∈ J  or µ ∈ J,ν ∈ I

#

$
%

&
%

'

(
%

)
%

                                                                           (41) 

This allows for the application of approximations, for example in the I block of Vµν
x , to use the distance RI,L 

while using the uniform distance definition RIJ,L for the off-diagonal elements corresponding to both fragments I 

and J.  

 It is now appropriate to discuss the types of approximations applied to the ESP using the previously 

described energy expressions. Two levels of approximation can be used, both of which are applied to the two-

electron integral term in Eq. (34).  The first level of approximation, applied at intermediate distances, is the 

Mulliken atomic orbital population to the two-electron integrals.241,242  Eq. (36) can be rewritten as;  

vµν
K ≅ (DKSK )λλ

λ∈K
∑ (µν | λλ)                                                                                                                        (42) 

The application of this approximation can reduce the computational cost of the two-electron integrals by a 

factor of NB (number of basis functions). 

 The second level of approximation uses fractional atomic charges QA derived from the Mulliken atomic 

populations of the monomers.  This approximation is applied at long distances and simplifies Eq. (36) as 

vµν
K ≅ µ (QA / | r − rA |)

A∈K
∑ ν                                                                                                                      (43) 

effectively reducing the computational cost of the two-electron integrals by another factor of NB. 
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 For far separated monomers the corresponding dimers do not need to be computed with the SCF procedure, 

as the monomer states already polarized by the ESP are very little perturbed by an explicit dimer SCF. However, 

there is a Coulomb interaction between such monomers that should be computed and added to the total energy,  

′EIJ ≅ ′EI + ′EJ + Tr(DIu1, I (J ) ) + Tr(DJu1,J ( I ) ) + Dµν
I Dρσ

J (
ρσ∈J
∑

µν∈I
∑ µν | ρσ ) + ΔENR                        (44) 

where u1,I (J ) and u1,J ( I ) (cf. Eq. (35)) are the one-electron Coulomb potentials of the force exerted by fragment 

J on fragment I, and vise-versa. The electron-electron interaction (cf. Eq. (36)) and the nuclear repulsion are 

also added. 

 The final equations for the basic energy evaluation in FMO2 and FMO3 for RHF wave functions are Eqs. 

(37) and (38), respectively. These equations can be readily extended to other wave functions. A presentation of 

the application to other methods can be found in chapter 2 of Ref 141.  

 The original energy gradient243 based on the HOP approach was proposed for FMO2 in 2001 and contained 

several approximations. The derivative of Mulliken point charges in ESP was added by Nagata et al.244 in 2009, 

and the derivative of HOP terms was developed by Nagata et al. 245 in 2010. The FMO3 gradient was introduced 

in 2010 by Komeiji et al.246 The FMO2 gradient for the AFO approach was proposed in 2009 by Fedorov et al. 

247 A fully analytic FMO gradient without approximation was developed by Nagata et al.248 in 2011 with the 

introduction of the self-consistent Z-vector (SCZV) procedure to obtain the exact derivatives of the dimer terms 

coupled to the electrostatic potential.  

 In 2002, Inadomi et al. 249 proposed the FMO-MO method, which according to the classification of fragment 

methods as discussed above, belongs to a different category from the rest of the FMO methods. While most 

FMO approaches are one-step approaches, the FMO-MO method is two-step, in which the density is obtained 

from the FMO calculation and used to construct the Fock matrix of the whole system in the exact ab initio 

fashion. Watanabe et al.250 benchmarked the FMO-MO method for DNA, and Umeda et al.251 proposed an 

efficient parallel algorithm for this method. It should be noted that the FMO-MO method (so far limited to 

RHF) can be used as a traditional ab initio method, because it produces the energy, MOs and other properties 

from the total Fock matrix.  

 Sekino et al.240 in 2003 suggested taking the union of fragment MOs as a representation of the MOs of the 

whole system. Tsuneyuki et al.252 in 2009 developed FMO-LCMO method, which has the limited but important 

aim of producing MOs near the HOMO and LUMO. This is accomplished by constructing a small MO-based 

Fock matrix collecting monomer and dimer contributions for a few orbitals of interest. For a similar motivation, 

Fedorov and Kitaura236 in 2009 proposed to build the total AO-based Fock matrix for the whole system 

(FMO/F) from monomer and dimer Fock matrices. This is in contrast to the FMO-MO method, in which a 

similar matrix is computed in the ab initio fashion using the total density. Adding the exchange to this total 
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Fock matrix (FMO/FX) considerably improves the description of the virtual MOs. All of these methods are 

FMO extensions for generating a specific property (the MOs), rather than a density-based method like FMO-

MO, aimed at delivering the energy, MOs and other properties. 

 Sugiki et al.53d in 2003 began the process of extending FMO to wave functions other than RHF, by 

developing FMO2-based DFT, extended to FMO3 by Fedorov and Kitaura 253 in 2004; Shimodo et al.254 in 2006 

reported some accuracy benchmarks for FMO2-DFT. In 2004, Møller-Plesset perturbation theory was 

interfaced with FMO by Fedorov and Kitaura,255 and an alternative implementation was reported by Mochizuki 

et al. 256 , 257  In 2009, RI-based FMO2-MP2 was proposed by Ishikawa and Kuwata 258  and Cholesky 

decomposition based FMO2-MP2 by Okiyama et al.259 Mochizuki et al. developed an efficient parallel 

algorithm on the Earth Simulator for FMO-based MP2 in 2008 260 and MP3 in 2010.261 The FMO3-based MP2 

method was developed for the energy by Fedorov and Kitaura262 in 2009 and gradient by Mochizuki et al.263 in 

2011.  

 The first MD simulations using FMO were reported by Komeiji et al.264 in 2003, indicating that the gradient 

accuracy problem (which has subsequently been solved by Nagata et al.248) requires larger fragments. Ishimoto 

et al.265,266 in 2004-2005 used their Hamiltonian algorithm for FMO-MD. Dynamic fragmentation was proposed 

by Komeiji et al.267 in 2009 to cope with the problems of bond breaking in FMO-MD. A review of FMO-MD 

methods was published by Komeiji et al.268 in 2009. A path integral based FMO-MD was developed by Fujita et 

al.269 in 2009, and an interface with the nuclear electron orbital (NEO) approach we developed by Pak and 

Hammes-Schiffer. A FMO-MD method with periodic boundary conditions was developed by Fujita et al.270 in 

2011. 

 Fedorov and Kitaura271 in 2005 developed FMO-based MCSCF and coupled cluster272 methods. As an 

important step to improve the efficiency, Fedorov et al.273 introduced the multilayer FMO (MFMO) method, in 

which the system can be divided into several layers, and each layer is allowed to have its own basis set and level 

of theory. The original MFMO formulation273 suggested that layers can have a different many-body expansion, 

which was later realized by Mochizuki et al.263 under the name of FMO(3)-MP2, which should also be called 

FMO3-RHF:FMO2-MP2 for the case when the two layers include all fragments. In a quest for the exact 

solution, Maezono et al.274,275 in 2006-2007 proposed the FMO-based quantum Monte-Carlo method. 

 One of the main targets of the FMO method is biochemical simulations, for which it is very important to 

properly consider solvent effects. The FMO-based PCM was developed for both the energy by Fedorov et al.276 

in 2006 and the gradient by Li et al.277 in 2010. A Poisson-Boltzmann model was incorporated into FMO by 

Watanabe et al.278 in 2010. For discrete models of explicit solvation, water can be described either as FMO or 

EFP fragments. The latter is due to the work of Nagata et al. for the FMO/EFP energy177 in 2009 and gradient178 

in 2011. 
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 Complementing the ground state methods, FMO-based MCSCF was the first excited state method, reporting 

accuracy for singlet and triplet calculations of solvated phenol.271 Mochizuki et al. developed FMO-based CI 

with singles (CIS) 279 in 2005 and added the perturbative treatment of doubles in 2007.280 The FMO2-based 

TDDFT method was proposed by Chiba et al. 281,282 in gas phase in 2007 and solution283 in 2008; the gas-phase 

gradient was developed284 in 2009 and the FMO3-based TDDFT method was proposed285 in 2010. For open 

shells, the ROHF-based MP2 and CC methods were developed by Pruitt et al.286 in 2010. 

 All of these excited state methods are built around the central excited state fragment, which naturally 

contains the chromophore. In the FMO2 model, dimers that include the central fragment add explicit quantum 

effects, while other fragments only exert their electrostatic potential (ESP). In contrast to ground state FMO, 

FMO1 for excited states is quite useful as an approximation to full FMO2, if one is interested in the excitation 

energies. The working equation is very similar to Eq. (29), with the difference that the energies of the central 

monomer and dimers that contain the central monomer correspond to the excited state, while other energies are 

for the ground state.  

 There is an important difference between MCSCF on the one hand, and CI or TDDFT on the other. In the 

former, ESPs are computed for the central excited state (described by MCSCF), while in the latter the ESPs 

correspond to the ground state (RHF or DFT, respectively). The FMO1-based CI method has been described as 

a multilayer approach with a single chromophore fragment in the second layer,279 but it can also be thought of 

as a single layer FMO1-CI, because these two descriptions are identical. On the other hand, for TDDFT, one 

can define FMO1-RHF:TDDFT, which corresponds to performing TDDFT calculations for the chromophore in 

the field of the ESP computed at the RHF level. This is different from FMO1-TDDFT, in which the ESPs are 

computed with DFT. 

 To analyze the effect of isotopic substitutions by using wave functions for nuclei, Ishimoto et al. 287 in 2006 

developed a multicomponent method. Auer et al.288 in 2009 proposed the FMO-based nuclear-electronic orbital 

(NEO) method. Mochizuki et al.289 in 2006 developed a method for calculating the dynamic polarizability in the 

FMO framework. An interface to model core potentials (MCP) for the treatment of heavy atoms was added in 

2006 by Ishikawa et al.290 The total electrostatic potential was used to obtain atomic charges fitted to it by 

Okiyama et al. in 2007 291 and 2009.292 Sekino et al.293 in 2007 implemented the calculation of NMR chemical 

shifts with FMO2. Gao et al.294 in 2007 proposed an approach for evaluating NMR shifts from dimers, by using 

two fragmentations shifted with respect to each other, extended 295 later in 2010 to larger conglomerates of 

fragments but with a single fragmentation. 

 The FMO method is naturally suited to various analyses, as it provides information on fragments and their 

interactions that are naturally built into the method. In 2006, Amari et al.296 developed the visualized cluster 

analysis of protein-ligand interactions based on the FMO method. Du and Sakurai297 in 2010 proposed 

multivariate analysis of properties of amino acid residues.  
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 An important goal is to obtain more information than simple pair interaction energies (PIEs), also called 

interfragment interaction energies, IFIEs. Mochizuki et al.298 in 2005 developed the configuration analysis for 

fragment interaction (CAFI), providing a means to extract for each orbital the stabilization component of the 

polarization and the charge transfer for IFIEs. Fedorov and Kitaura built EDA into the FMO method, 

developing the pair interaction energy decomposition analysis (PIEDA),95 which decomposes PIEs into their 

electrostatic, exchange-repulsion, charge transfer and dispersion components.  A fragment interaction analysis 

based on local MP2 (FILM) was proposed by Ishikawa et al.299 in 2007. FILM allows extracting orbital-based 

contributions to the electron correlation component of the interaction energy. 

 The counterpoise correction300 for the basis set superposition error (BSSE) conceptually is a two-fragment 

method, so it is natural to attempt to include it into fragment methods. Within the FMO framework, after the 

initial studies by others,290,299 Ishikawa et al.301 complemented the FMO energy in Eq. (29) with BSSE 

corrections. The validity of these corrections remains to be seen, as it has not been shown that they indeed bring 

the results closer to the complete basis set limit. One should also be aware that careful tests302 indicate that in 

particular for MP2 the CP correction does not improve the results in this sense, especially for small basis sets. 

 Geometry optimizations for the FMO method were reported by Fedorov et al.303 in 2007. Consequently, 

Ishikawa et al.304 in 2010 suggested the partial energy gradient (PEG) method and Fedorov et al.305 in 2011 

introduced the frozen domain (FD) concept in their FMO/FD method. The focus of both of these methods is to 

perform efficient geometry optimization of a part of the system. In the FMO/FD approach (Fig. 3), the system is 

divided into several domains: frozen, polarizable and active. The electronic state of the frozen domain is 

computed only at the initial geometry, and the polarizable domain is recomputed for new geometries during 

geometry optimizations of atoms in the active domain. The main purpose of FMO/FD and its faster derivative 

FMO/FDD (in which the number of dimer calculations in the polarizable domain is reduced by omitting pairs of 

fragments except those in the active domain) is to efficiently perform geometry optimizations of the active sites 

in large molecular systems. To demonstrate the efficiency of the FMO/FDD approach, Fedorov et al.305 

optimized the geometry of a large protein-ligand complex with 19471 atoms at the B3LYP/6-31G(d) level of 

theory for the polarizable domain. This calculation took 32 h on six dual-CPU quad-core 2.83 GHz Xeon nodes. 

 There are several fragment methods that are closely related to the FMO method. The electrostatically 

embedded many-body expansion (EEMB) method 306,307,308,309 corresponds to FMO with constant ESP, which is 

not updated in the SCC fashion, and is often taken to be represented by point charges from molecular mechanics. 

Hirata et al. 310 in 2005 proposed representing the ESP by dipoles and in 2008311 by point charges fitted to 

reproduce the fragment electrostatic potential.  

 In the effective fragment molecular orbital (EFMO) method Steinmann et al.312 merged the ideas of EFP and 

FMO (Scheme I. In their method, no SCC calculation is performed, and all fragments are computed in vacuum 

(i.e., in the absence of the ESP). The many-body polarization is added, computed from fragment polarizabilities 
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(as in the EFP method). The long range Coulomb interaction in Eq. (44) is computed using multipoles, also 

following the EFP method. Short range dimers (for which the interfragment distance RIJ is smaller than a 

threshold RESDIM) are computed self-consistently, in vacuum. The EFMO energy expression is given by 

E = EI
0 +

I=1

N

∑ EIJ
0 −EI

0 −EJ
0 −EIJ

ind( )
I>J

RIJ≤RESDIM

N

∑ + Δ %EIJ
ESM +

I>J
RIJ >RESDIM

N

∑ Etotal
ind                                                       (45) 

  The superscript 0 indicates that the corresponding calculations are calculated in vacuum. The total induction 

energy ind
totalE  is corrected for double counting by subtracting SCF dimer contributions ind

IJE  (because SCF 

dimers have implicit polarization). The long range electrostatic term Δ ′EIJ
ESM  of dimers, for which the 

interfragment separation is larger than RESDIM, is computed with multipoles, consistent with the approximate 

method of computing the energy of far separated dimers in FMO, Eq. (44). 

 In the EFP method, multipoles up to octopoles are used. In the EFMO method, the multipole expansion is 

truncated at the level of quadrupoles since higher multipoles become less important at large inter-fragment 

separations. Distributed multipoles and polarizability tensors for computing polarization terms are calculated 

on-the-fly for each individual fragment. The main differences between EFMO, FMO, and EFP are summarized 

in Scheme I. The computational cost of the EFMO method is significantly less than the cost of a corresponding 

FMO calculation. The EFMO method employs explicit ab initio calculations on the closely-lying dimers where 

quantum effects such as charge penetration and charge-transfer are important and the semi-classical EFP terms 

could become less accurate. 

 Several methods, which appeared earlier than EFMO, are related and differ in the details of computing EFP-

related terms in EFMO. These methods include the polarizable multipole interaction with supermolecular pairs 

(PMISP)313,314,315 and the approach by Beran.316,317 PMISP involves capping fragments so it may be closer to 

methods like KEM rather than FMO, modified with the addition of the explicit polarization. 

2.3 Molecular Tailoring Approach 

 Since the original formulation of the molecular tailoring approach (MTA)119,318 the fragmentation scheme 

has undergone significant changes and improvements319,320.  The general idea of the MTA is similar in nature to 

both MFCC and SMF, with aspects of the divide and conquer method incorporated as well.  The MTA has been 

tested on a number of systems321,322,323,324 including large p-conjugated systems, e.g., graphene sheets. 325  

Further refinements of the method allow for geometry optimizations based on the adjustment of the cardinality 

of the fragments and their overlapping sections. This newest implementation of the MTA is appropriately 

named the cardinality guided molecular tailoring approach (CG-MTA).319  
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 The current implementation of the MTA is highly automated, with the user only needing to specify two 

values in addition to providing the coordinates of the target system.  The first value specified is the maximum 

fragment size in terms of atoms per fragment.  The second value, R-goodness (Rg), is central to the MTA 

fragmentation scheme and will be discussed in greater detail below.   

 The general fragmentation process for the MTA begins with the specification of the maximum fragment size 

and Rg and proceeds as follows. (1) Create an initial set of fragments by centering a sphere of radius Rg at each 

atom and assigning all atoms falling within the sphere to the fragment.  During this process care is taken not to 

break aromatic rings or double bonds.  Additional atoms are included or excluded based on the maximum 

fragment size. (2) Fragments created in step one are merged according to their proximity, while staying within 

the maximum fragment size set initially. (3) Merging of fragments is performed recursively depending on the 

maximum overlap of nearest neighbor fragments.  This recursive merging stops once all fragments reach the 

maximum fragment size. (4) The final set of fragments is checked for the respective Rg value of the included 

atoms. (5) Broken bonds are capped using hydrogen atoms positioned along the appropriate bond vectors. (6) 

All intersecting portions of the merged fragments are computed, with the sign of each contribution being set 

according to (-1)K-1 where K=number of fragments involved in the intersection. (7) The energy expression for 

the fragmentation scheme is created and the total energy of the system is calculated. 

 The value Rg used for fragment definition defines the radius of the sphere centered at atom i in the molecule 

of interest. All atoms that fall within this sphere are chosen to be part of fragment Fi.  Since a sphere of radius 

Rg is created around all atoms in the system of interest at the beginning of the fragmentation process, each atom 

is bound to appear in more than one fragment even after the merging process in step 2.  When this occurs, such 

atoms are evaluated for how accurately the local environment is represented by measuring the Rg value of the 

atom in each fragment.  The largest of these values is chosen to represent the Rg of the atom in that particular 

fragmentation scheme.  This is important since the value of Rg measures the quality of the fragmentation 

scheme based on how well the chemical environment around atom i is represented.  A larger value of Rg will 

give a better representation of the chemical environment, providing more accurate results.  It has been shown 

that values of Rg in the range 3-4 Å is necessary to achieve accurate results.  While the minimum value of Rg 

ensures that each atom will have a certain representation of the surrounding chemical environment, the 

maximum fragment size assures that fragments do not become too large based on the computational resources 

available.  The use of spheres centered around atoms also allows for an inherent treatment of non-bonded 

effects.  For example, in a system such as a protein with a three dimensional structure, one can imagine atoms in 

parts of the system that are not connected to the atom center i falling within the sphere created by Rg.  In such 

cases such, it is possible for only hydrogen atoms in the unconnected region to fall into the sphere.  When this 

occurs, atoms bonded to these hydrogens are added to the fragment as well.  In general, the fragmentation 

process is automated to account for such systems. 
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 Consider a general molecule M that, after the complete fragmentation procedure, is broken into two 

fragments F1 and F2.  The overlap of these two fragments,  F1  F2 , must be subtracted from the energy, giving 

the total energy expression for the system as: 

 EM = EF1
+ EF2

−EF1F2
                                                                                                                                  (46) 

 This expression for the total energy holds true for any system with only single overlaps between fragments.  

In the case of non-linear systems, where more than two fragments overlap in the same region, additional terms 

must be added or subtracted from the total energy.  Taking these cases into consideration, a general expression 

for the total energy of a chemical system containing K fragments can be derived as: 

 
EM = EFi

i

K

∑ − EFiFj
i> j

K

∑ + ...+ (−1)K−1 EFiFj....FK
i> j>k

K

∑                                                                                (47) 

 During the course of energy calculations for all fragments, the individual fragment densities are obtained 

during the standard SCF procedure.  The complete density matrix for the full system can be constructed using 

the density matrix from each fragment.  To obtain the most accurate density matrix for the system, individual 

density matrix elements are chosen from fragments based upon the quality of the Rg value calculated for each 

atom during the fragmentation process.  

 The derivative of the energy expression Eq. (47) with respect to coordinates Xm can be easily derived as: 

 

∂EM

∂Xµ
=

∂EFi

∂XFi

µ
i

K

∑ −
∂EFiFj

∂Xµ
FiFji

K

∑ + ...+ (−1)K−1 ∂EFiFj....FK

∂Xµ
FiFj....FKi

K

∑                                                                     (48) 

where XFi

µ refers to the nuclear coordinates of atom µ in fragment Fi and 
 
Xµ

Fi I Fj
refers to the coordinates of the 

overlapping section of fragments Fi and Fj.  An analogous expression for the Hessian can be written as: 

 
H = HFi

i

K

∑ − HFiFj
i

K

∑ + ...+ (−1)K−1 HFiFj....FK
i

K

∑                                                                                  (49) 

 Additional capabilities have been added to the CG-MTA including correlated methods such as MP2 and RI-

MP2, 326 course grained parallelization319 and the calculation of vibrational frequencies.327   

2.4 Kernel Energy Method  

 The original formulation of the kernel energy method (KEM) 328 was tested on a number of 

systems.329,330,331,332  Further improvement to the method333 allowed the KEM to be applied to systems beyond 
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its original limitation to peptides and polymers.  Based loosely on the energy decomposition analysis, the kernel 

energy method takes into account fragment or “kernel” interactions up to fourth order terms.334  More recent 

improvements have enabled the KEM to accurately model p-conjugated systems, most notably graphene.335 

 The purpose for developing the KEM was to perform quantum calculations on systems with biological 

importance such as proteins.  By considering a system to be composed of individual “kernels” with known 

atomic coordinates, the contributions of all kernels in a system can be combined to provide properties for the 

full system.  In this way the energy and properties of large systems can be obtained even if calculations on the 

full system are impossible.  A few simple rules govern a calculation using the KEM, the most important being 

the requirement that each atom must be present in some kernel once and only once.   

 Once a system has been divided into separate kernels, care must be taken to remove any dangling bonds at 

the periphery of the kernels through the use of hydrogen caps.  After all dangling bonds are capped, each kernel 

energy is evaluated, followed by all “double kernel” calculations of nearest neighbor kernels.  In the original 

method, only those kernels covalently bonded to one another were considered during double kernel calculations.  

However, during subsequent development, the method was modified to include separated kernels during the 

double kernel evaluation, providing a more accurate description of the systems tested.   

 The sum of kernel contributions to the total energy of a system can be written mathematically as: 

Etotal = Eij − Ei

i=2

n−1

∑
i=1; j=i+1

n−1

∑                                                                                                                                   (50) 

Eij represents the energy of two covalently bonded kernels and Ei is the energy of a single kernel.  During 

further development, the definition of double kernel calculations was extended to include all double kernels, not 

only those connected by a covalent bond.  The modified formula for the total energy is then written as: 

Etotal = Eij

i=1
j=i+m

n−m

∑
#

$

%
%
%

&

'

(
(
(
− (n−2) Ei

i=2

n−1

∑
i=1; j=i+1

n−1

∑                                                                                                           (51) 

or, written more intuitively: 

Etotal = Ei
1≤i≤n
∑ + ΔEij

1≤i< j≤n
∑                                                                                                                               (52) 



www.manaraa.com

 

 

44 

ΔEij is defined as the interaction energy of two kernels (ΔEij = Eij − (Ei + Ej ) ).  To improve the accuracy 

of the method beyond the inclusion of disconnected double kernel calculations, both triple and quadruple kernel 

calculations were implemented.  The total energy including triple kernel contributions is: 

Etotal = Ei
1≤i≤n
∑ + ΔEij

1≤i< j≤n
∑ + ΔEijk

1≤i< j<k≤n
∑                                                                                                     (53) 

with the expression for ΔEijk following that of ΔEij  (ΔEijk = Eijk − (Ei −Ej −Ek )− (ΔEij −ΔEik −ΔEjk )

).  Similarly, inclusion of quadruple kernel energies gives the expression: 

Etotal = Ei
1≤i≤n
∑ + ΔEij

1≤i< j≤n
∑ + ΔEijk

1≤i< j<k≤n
∑ + ΔEijkl

1≤i< j<k<l≤n
∑                                                                        (54) 

and ΔEijkl follows from the expressions for ΔEij and ΔEijk .  Although the use of quadruple kernels is not 

typically required, addition of these terms can be advantageous for large systems or if a computer with many 

nodes and cores is available. In most cases, inclusion of double and triple kernel interactions is sufficient to 

achieve a high level of accuracy compared to fully ab initio calculations.   

 Applications of the KEM have included proteins328, as well as other biologically relevant systems such as 

DNA329 More recently the KEM has applied successfully to systems containing extended aromatic character335.  

Application to systems with such diffuse electrons is typically a failing point for most fragmentation methods, 

however the KEM overcomes this deficiency through the use of a new bond fractioning scheme.  Instead of 

fractioning single bonds perpendicular to the direction of bonding, the KEM method employs a “fissioning” 

process where the aromatic bonds are divided in half parallel to the direction of bonding.  This creates two 

aromatic bonds, one in each of the two kernels created.  Breaking a conjugated system such as graphene into 

kernels using this process has produced results accurate to within 1 kcal/mol of full ab initio HF and MP2 

calculations. Recent development of the KEM includes a generalized fragmentation scheme336  based on the 

approach of Deev and Collins120 aims to increase the computational efficiency through elimination of 

extraneous double, triple and quadruple kernel calculations. 

2.5 Molecular Fractionation with Conjugated Caps and Related Fragmentation Methods 

2.5.1 MFCC 

 As with many fragmentation methods, the molecular fractionation with conjugate caps (MFCC) 

approach117,337,338,339,340,341,342,343,344 attempts to reduce computational costs and provide a means to calculate 

interaction energies, but specifically for protein-ligand systems.  The original formulation of the MFCC 

approach337� fractioned only peptide bonds to enable the calculation of protein-ligand binding energies.  The 
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fractioned bonds are then capped with so called “concaps” that resemble the local environment of the fragment.  

By adding together the individual contributions of the fragments and subtracting the contributions from the 

merged concaps, the total interaction energy of the protein-ligand system can be calculated.  An important 

difference between the MFCC method and other fragmentation methods that employ capping of fractioned 

bonds is the nature of the caps used.  Instead of simple hydrogen caps, the caps in the MFCC approach are 

formed using portions of the neighboring sections of the molecule.  This provides both an efficient method for 

choosing caps as well as including a representation of the local environment during individual fragment 

calculations.  Further developments have provided the ability to fraction disulfide bonds and allowed for the 

inclusion of non-bonded interactions in globular proteins.   

 As mentioned previously, the focus of the original formulation of the MFCC approach was to break a 

protein into its constituent amino acids and calculate the interaction energies between individual protein 

fragments and the ligand of interest.  The simplest example is a protein P composed of N amino acids; 

P = nA1A2A3A4 ...AN                                                                                                                                        (55) 

where Ai
  represent the individual amino acids and n distinguishes the N terminal end of the protein 

n = NH3
+ (NH2 )                                                                                                                                                 (56) 

with the opposite end, AN, representing the C terminal tail; 

AN = RNCHCOO_ (RNCHCOOH)                                                                                                              (57) 

 To calculate the interaction between protein P and an arbitrary molecule M, the protein is divided into single 

amino acid fragments across the homolytically broken N-C peptide bonds (Figure 4).  This creates N fragments 

with either one or two unpaired electrons located where the N-C bond(s) used to be.  To avoid this unnatural 

electronic state, each fragment is assigned either one or two concaps, Cap
1 and Cap

1* .  The main purpose of the 

caps345 is to complete the valency requirements of the “dangling” bonds left over after fractionation.   

Consider the fractioning of the bond in a simple two amino acid (dipeptide) system.  The bond 

fractioning and subsequent capping gives; 

A1A2 = A1Cap
1 + Cap

1*A2 − Cap
1*Cap

1                                                                                                                   (58) 

The energy contained in A1A2 can be represented by the sum of the individual amino acid fragments minus the 

artificial molecule create by joining the two concaps.  One can similarly break a larger tripeptide system of 

three amino acids to give three fragments and the corresponding concaps: 
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A1A2A3 = A1Cap
1 + Cap

1*A2Cap
2 + Cap

2*A3 − Cap
1*Cap

1 − Cap
2*Cap

2                                                                       (59) 

 These two simple examples illustrate the two cases of singly and doubly capped fragments, with the general 

systems of interest consisting of both the protein and the general ligand M.  Note that the original MFCC 

formulation was only concerned with the interaction energy between a rigid protein and ligand, foregoing the 

subsequent intramolecular energy calculation for the full system.  The total interaction energy can be 

represented by; 

E(M − P) = E(M − Cap
i−1*AiCap

i )
i

N

∑ − E(M − Cap
i*Cap

i )
i

N −1

∑                                                                     (60) 

The term E(M − Cap
i−1*AiCap

i )  represents the interaction energy between molecule M and the capped protein 

fragment Cap
i−1*AiCap

i .  The second sum of terms represents the interaction of molecule M with the artificial 

molecule formed by connecting concaps, Cap
i*Cap

i .  The regularity of amino acid bonding provides a simple 

choice for the concaps.  Since only peptide bonds are being broken, the N-terminus side of each amino acid can 

be capped with an NH2 group and the C-terminus side can be capped with Ri+1CαH2  (see Fig. 4).  This choice 

of caps ensures that the valence requirements of the broken bonds are complete and the approximate chemical 

environment around the fragment is being properly represented.  Another benefit of choosing caps in this way is 

the nature of the artificial molecules formed when joining caps, creating reasonable molecular species such as 

H2NRi+1CαH2 .  The most recent implementation of the MFCC method employs two different sizes of 

concaps,346 a “small” and a “large” version.  The small concap only extends across the nearest neighbor amino 

acid, while the large concap extends across the two nearest neighbor amino acids.  Use of the large concap 

provides the obvious benefit of increased accuracy, with the tradeoff being an increase in computational cost.   

 In the special case where disulfide bonds are fractioned,347 for example a bond between two cystines, an 

additional term must be added to Eq. (60); 

∑∑

∑
−−

−

−−−−

−=−
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DCDCMECCME

CACMEPME
                                                                                        (61) 

DCap
i*  and DCap

i  can be either MeS or HS caps, with the MeS caps shown to give slightly more accurate 

results.   
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 Further development of the MFCC approach348,349 addressed the limitation of calculating only the interaction 

energy by allowing for the calculation of the total electron density, electrostatic potential and dipole moment of 

proteins.  Using the basic dipeptide example in Eq. (58), the total electron density of the system, ρ , can be 

expressed as: 

ρ = ρA1
+ ρA2

− ρcc                                                                                                                                         (62) 

where ρA1
 and ρA2

 represent the densities of  the capped amino acid fragments after fractionation and ρcc  

representing the density of the merged concap.  By calculating the densities of the separate fragments, the total 

density of the system can be determined.  One advantage of this formulation lies in the choice of concaps after 

fractionation.  If the cap chosen for fragment A1 includes the entirety of fragment A2, then Eq. (62) is exact, 

giving the correct limiting behavior if the caps are chosen to be sufficiently large.  For a system of N amino 

acids, Eq. (62) can be generalized as; 

                                                                                                                        (63) 

where the third summation over dc
iρ  is only included when disulfide bonds are fractioned.  Using this 

representation of the total density of the system, the electrostatic potential can easily be obtained as 

φ(r) = −
ρ( ′r )
r − ′r

d ′r∫                                                                                                                                      (64) 

with the total electrostatic potential derived through the combination of individual electrostatic potentials of the 

fragments: 

∑∑∑
=

−

==

−−=
dN

i
i

N

i
i

N

i
i

1

dc
1

1

cc

1
φφφφ                                                                                                                           (65) 

In a similar fashion, the dipole moment, µ , of the protein can be calculated as 

µ = µi
i=1

N

∑ − µi
cc

i=1

N −1

∑ − µi
dc

i=1

Nd

∑                                                                                                                           (66) 

Obtaining the total electron density of the system provides a route to calculating the total energy of the 

system,346 either through the standard SCF method or by using Kohn-Sham orbitals and DFT formalism.  The 

ρ = ρi
i=1

N

∑ − ρi
cc

i=1

N −1

∑ − ρi
dc

i=1

Nd

∑
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implementation of the MFCC approach that allows for the calculation of the total energy using the density 

matrix (DM) has been termed the MFCC-DM approach.   

 Two versions of the MFCC-DM approach,349 the “simple” approach (MFCC-SDM) and the “ghost” 

approach (MFCC-GDM), are available.  These two variants are the result of using extra hydrogens as part of the 

conjugate caps.  If the MFCC approach were exact, then the density matrix elements associated with the 

hydrogen atomic orbitals (AOs) would be effectively zero.  Since the MFCC approach is not exact in practice, 

these matrix elements add small contributions to the density matrix.  The two implementations, MFCC-SDM 

and MFCC-GDM, differ in how these extraneous hydrogen AOs are handled.  In the MFCC-SDM approach the 

matrix elements are simply neglected, whereas in the MFCC-GDM approach the extra hydrogens are treated as 

ghost atoms and the matrix elements are accounted for explicitly.   

 Other than how the extraneous hydrogen atoms are handled, the most important difference between the two 

MFCC-DM implementations is the structure of the density matrix.  In the MFCC-SDM approach the number of 

electrons is not exactly conserved since the contributions from the extra hydrogen atoms are simple ignored.  In 

the MFCC-GDM approach this deficiency is addressed, since the extraneous hydrogen atoms are treated 

explicitly as ghost atoms in the system.  The trade-off for the exact treatment of the density matrix in the 

MFCC-GDM approach is an increase in computational cost compared to the MFCC-SDM approach.  In practice 

it has been shown that both approaches produce sufficiently accurate results when compared to full ab initio HF 

calculations.349   

 To improve the description of globular macromolecules with two- and three-dimensional structures, the 

addition of non-bonded or “through-space” interactions was implemented.350  Currently this includes a 

description of two-body interactions only due to the negligible contribution of higher order interactions in 

proteins.  In general, if two fragments are separated by more than one fractioned bond, they may still be 

adjacent to one another in the structure of the macromolecule.  Following the EDA, the interaction of these two 

fragments can be calculated by; 

ΔE (2) = [E(AiAj ) − E(Ai ) − E(Aj )]
j
∑

i
∑                                                                                                (67) 

   Instead of capping these fragments in the same fashion as described earlier, these separated fragments are 

capped only with hydrogen atoms.  This avoids over-counting the two-body correction as well as simplifying 

the expression needed to calculate the “through-space” two-body correction.  This correction can be added to 

the previous representation for the full energy of the system, giving 

E = E(Ai )
i=1

N

∑ − E(Ai
cc )

i=1

N −1

∑ − E(Ai
dc ) + ΔE (2)

i=1

Nd

∑                                                                                      (68) 
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This new expression for the total energy of the system is termed the energy-corrected MFCC (EC-MFCC) 

approach.   

 In addition to the MFCC formalism described above, a number of other capabilities have been added 

recently. These capabilities include gradients for geometry optimizations351,350 and the hybrid generalized 

molecular fractionation with conjugate caps/molecular mechanics (GMFCC/MM) approach352 that uses MM for 

long range interactions.   The addition of the conductorlike polarizable continuum model (MFCC-CPCM)353 and 

the pairwise interaction correction to the density matrix formulation of the MFCC approach (MFCC-DM-

PIC),354 allow for the calculation of the electrostatic solvation energy of macromolecules and the treatment of 

short range polarization interactions, such as hydrogen bonding, respectively.  Additionally, the electrostatic 

field-adapted molecular fractionation with conjugate caps (EFA-MFCC)355 approach improves the ability to 

treat charged systems by adding a description of the surrounding environment using point charges. All of these 

improvements to the original formulation provide a means to perform calculations on a variety of large 

macromolecular systems while including a number of important intermolecular interactions. 

2.5.2 Generalized Energy-Based Fragmentation Approach 

 The generalized energy-based fragmentation (GEBF) approach has been proposed118 as a reformulation of 

the EFA-MFCC approach.  This method builds upon the fragmentation scheme of the MFCC approach, but 

improves upon the description of the environmental electrostatic field added in the EFA-MFCC approach.  The 

atoms far separated from the fragment of interest are represented as point charges and included in the ab initio 

calculation on the fragment.  The main improvement over the EFA-MFCC approach is the inclusion of 

electrostatic interactions with polar groups, improving the ability of the method to calculate dipole moments and 

static polarizabilities.   

 A new fragmentation scheme is also introduced for the GEBF approach, distinguishing the method from 

previous MFCC implementations.  The general fragmentation scheme consists of the same ideas, dividing a 

large system into smaller fragments and capping each fragment with the neighboring fragment to conserve the 

valence requirements of the broken bonds.  Any dangling bonds left, such as those on the capping fragment, are 

capped with hydrogen atoms.  However, the inclusion of neighboring fragments is not restricted to those 

exclusively covalently bonded to the fragment; non-bonded fragments are included as well.  By choosing the 

number of fragments to be included in each quantum calculation using a distance based cut-off, the size of 

fragments and therefore the accuracy of the method can be easily varied depending on computational resources. 

 Consider a linear system, M, of six fragments; 

M = m1m2m3m4m5m6                                                                                                                                    (69) 
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with connectivity represented in Fig. 5.  Starting with m1, derivative subsystems are formed including the 

central fragment (m1) and all fragments covalently and, in this case, hydrogen bonded to m1.  This process is 

then repeated for all mi (i = total number of fragments) fragments in the full system M, producing i subsystems 

in the general case.  Subsystems that may be present in a larger subsystem are eliminated to avoid double 

counting.  For example, the subsystem m1m2m3m4 appears in the subsystem m1m2m3m4m6 and should therefore 

be eliminated from consideration.   In this case, two subsystems are eliminated, leaving four unique subsystems.   

 The remaining subsystems are then checked for double counting of fragment interactions.  For example, if 

the four-body interaction m1m3m4m6 occurs more than once in the four derivative subsystems, a complementary 

subsystem must be built and subtracted from the sum of the subsystems.  This process is followed through for 

all n-body interactions down to single fragment terms, with each subsystem being assigned a coefficient Ci of 

either 1 or -1.  The total energy of the system M can then be represented as; 

E = CiEi
i

N

∑                                                                                                                                                      (70) 

where N is the total number of subsystems.   This fragmentation scheme provides nearly all of the three- and 

four-body interactions, with a small number being neglected. However, these neglected terms were shown to be 

a small source of error.118  The final requirement of the fragmentation process in the GEBF approach is for the 

net number of hydrogen atoms used for capping to be zero.   

 After the fragmentation and construction of derivative subsystems is complete, each subsystem calculation 

is performed in the field of point charges on all other atoms.  The partial charges QA used in the GEBF approach 

are derived from the natural population analysis (NPA)356,357 and computed for the central fragment only during 

an initial HF or DFT calculation on each subsystem.  These point charges are then incorporated into a second 

HF or DFT calculation for all subsystems.  Including the point charges in the energy expression, the total energy 

of the system is 

∑ ∑∑∑
>

−−=
N
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i
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QQ
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                                                                                                    (71) 

 
Ei is the total energy of the i-th subsystem that includes the effects of the electrostatic field.  The derivatives of 

this equation have also been derived,358 allowing for geometry optimizations and vibrational frequency 

calculations.  The most recent improvements to the method include an algorithm for automatic fragmentation 

and derivative subsystem construction for general molecules.359   

2.5.3 Other MFCC-related methods 
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 A number of more recent approaches have been proposed based on the general fractionation scheme 

suggested in the MFCC method.  An extension of the frozen-density embedding (FDE) 360 scheme to the MFCC 

approach uses overlapping electron densities of different subsystems to provide a more accurate representation 

of the surrounding environment, as well as a better representation of the total electron density.  Another 

approach361 rigorously derives the additivity rule used in the MFCC approach within the semilocal DFT 

formalism.  Finally, the multilevel fragment-based approach (MFBA) 362 employs a fragmentation scheme that 

is similar to the MFCC formulation (using hydrogen for caps instead of nearest neighbor fragments), while 

using different levels of ab initio theory for non-bonded fragment calculations depending on the fragment 

separation.   

 The polarized protein-specific charge (PPC) method proposed by Ji et al.363 in 2008 is based on fitting 

atomic charges to MFCC-derived electrostatic potentials, analogously to the FMO-derived charges291,292 

developed in 2007. The PPC method was applied364,365,366,367,368,369,370,371 to a number of studies showing the 

importance of the polarization missing in commonly used force fields.  

2.6 The Systematic Molecular Fragmentation Method 

 A more recent approach120, 372  to fragmenting large chemical systems is the systematic molecular 

fragmentation (SMF) method.  Originally designed to treat large proteins, polymers and surfaces, the SMF 

method takes a unique approach to fragmenting systems.  In the same vein as the other fragmentation methods, 

SMF employs highly accurate methods, such as MP2 or CC, to perform calculations on the smaller fragments, 

obtaining the total energy of the system.  However, instead of having uniquely defined fragments, the SMF 

method uses overlapping sections of the molecule to account for interactions between fragments.  By 

performing the fragmentation in this way, each atom “feels” the presence of the full system without the use of 

an externally applied field.  Non-bonded interactions are also accounted for between far separated regions of the 

system, originally using simple electrostatics, but more recently by using the EFP method to obtain more 

accurate results. 373  The SMF method has been used to describe the isomerization of DNA helices373 and 

retinal,374 as well as to give a proper description of potential energy surfaces of chemical reactions.375  

 The underlying premise behind the SMF method is in thinking of a chemical system as a collection of single 

bonded functional groups.  The definition of a functional group is central to the fragmentation, allowing for 

different levels of fragmentation (larger individual fragments) to increase the accuracy of the individual 

calculations.  This also allows for a better description of many-body effects, as any atom in the fragment would 

be influenced by more of the system during the full ab initio calculations.  The general fragmentation scheme is 

best described using a linear molecule, M, of arbitrary length K; 

M = G1G2G3...GK                                                                                                                                           (72) 
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The “super” molecule can be broken into two distinct molecules by stretching the bond between Gn-1 and Gn to 

infinity.  The bond is broken homolytically, assigning one electron from the broken bond to Gn-1 and the other to 

Gn.  To avoid charged fragments created by such a scheme, hydrogen atoms are used as “caps” on each of the 

fragments.  The overall fragmentation creates two molecules: 

M → M1 + M 2                                                                                                                                                (73) 

which are composed of; 

M1 = G1G2G3...Gn−1H
(n−1)                                                                                                                            (74) 

M 2 = H (n)GnGn+1...GK                                                                                                                                   (75) 

where H(n-1) and H(n) are the hydrogen caps for their respective fragments, located along the direction of the 

broken bond at a chemically sensible distance for the specific GH bond..120   

 The energies of these fragments can then be calculated and are related by: 

E(M ) = E(M1) + E(M 2 ) + dE1                                                                                                                     (76) 

where dE1 represents the energy change created by the bond breakage.  To allow for overlapping fragments, it is 

acknowledged that the fragmentation choice just described is not the only possible fragmentation scheme.  The 

complete molecule M could also be broken at some other single bond, creating different fragments, M3 and M4, 

giving the following energy expression: 

E(M ) = E(M 3) + E(M 4 ) + dE2                                                                                                                    (77) 

where 

M 3 = G1G2G3...Gi−1H
(i−1)                                                                                                                             (78) 

M 4 = H (i )GiGi+1...GK           (79) 

By performing both fragmentations at the same time, one can represent the total molecule M as; 

M → G1G2G3...Gn−1H
(n−1) + H (n)GnGn+1...Gi−1H

(i−1) + H (i )GiGi+1...GK    (80) 

This double fragmentation creates a new energy expression: 

E(M ) = E(M1) + E(M 5 ) + E(M 4 ) + dE3        (81) 
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The new fragment M5 is the result of fragment M2 being broken into two pieces by the second fragmentation.  

Specifically, 

M 5 = H (n)GnGn+1...Gi−1H
(i−1)          (82) 

The new term dE3 is the result of an approximation; namely, if the Gn-1Gn bond is separated from the  Gi-1Gi 

bond by a great enough distance, the energy difference from simultaneous fragmentation will equal the sum of 

the energy changes of each fragmentation performed separately; 

dE3 ≈ dE1 + dE2           (83) 

As the distance between the two fragmentation sites increases, the approximation in Eq. (83) becomes more and 

more reliable.  Rearranging Eqs. (77) and (81), while using the equality in Eq. (83), it can be shown that; 

dE3 = E(M ) − E(M1) − E(M 5 ) − E(M 4 )
≈ E(M ) − E(M1) − E(M 2 ) + E(M ) − E(M 3) − E(M 4 )

     (84) 

or more simply; 

E(M ) ≈ E(M 2 ) + E(M 3) − E(M 5 )         (85) 

Using the molecular definitions, it becomes apparent that M5 is simply the overlapping or “double counted” 

region common to both M2 and M3. 

 Within the foregoing formulation, there are different “levels” of fragmentation.  Fragmentation level 1 

consists of fragmentation sites separated by one functional group, level 2 has fragmentation sites separated by 

two functional groups and so on.  The current implementation of the SMF method allows for up to 

fragmentation level 3, with the obvious possibility for extension to higher levels.  As the fragmentation sites 

become farther separated, the approximation in Eq. (83) becomes more reliable and the total energy of the 

system approaches that of the full ab initio calculation.   

 To illustrate the exhaustive fragmentation of a system using the different fragmentation levels, consider the 

acyclic molecule M again: 

M = G1G2G3G4G5G6G7G8          (86) 

In this case, the fixed length K=8.  Under the level 1 fragmentation scheme the two broken bonds are separated 

by only one functional group.  The first fragmentation site is chosen between G1 and G2 and the second site 

between G2 and G3.  The first fragmentation creates 
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M = G1 + G2G3G4G5G6G7G8          (87) 

while the second creates; 

M = G1G2 + G3G4G5G6G7G8          (88) 

Subtracting group G2 to avoid double counting, we get the following representation of molecule M: 

M = G1G2 + G2G3G4G5G6G7G8 − G2         (89) 

Following this scheme through to all possible fragmentation sites allowed by level 1, until no fragment larger 

than two functional groups remains, the bonded energy of molecule M can be represented by the sum of 

fragment energies as follows: 

Elevel1
bonded (M ) = E(G1G2 ) + E(G2G3) + E(G3G4 ) +

E(G4G5 ) + E(G5G6 ) + E(G6G7 ) + E(G7G8 ) − E(G2 ) −
E(G3) − E(G4 ) − E(G5 ) − E(G6 ) − E(G7 )

     (90) 

Using the same methodology for level 2, with fragmentation sites instead separated by two functional groups, 

the bonded energy of M is represented by: 

Elevel2
bonded (M ) = E(G1G2G3) + E(G2G3G4 ) + E(G3G4G5 ) +

E(G4G5G6 ) + E(G5G6G7 ) + E(G6G7G8 )− E(G2G3)−
E(G3G4 )− E(G4G5 )− E(G5G6 )− E(G6G7 )

     (91) 

and using level 3, with fragmentation sites separated by three functional groups, gives a representation of the 

bonded energy of M: 

Elevel3
bonded (M ) = E(G1G2G3G4 ) + E(G2G3G4G5 ) +

E(G3G4G5G6 ) + E(G4G5G6G7 ) + E(G5G6G7G8 ) −
E(G2G3G4 ) − E(G3G4G5 ) − E(G4G5G6 ) − E(G5G6G7 )

     (92) 

Carrying this fragmentation scheme out to level n, where n is the number of groups in the system, one would be 

left with the unfragmented system.  By using higher levels of SMF, and consequently larger fragments, the total 

energy will approach that of the exact system. 

 So far, only the bonded energy of the example system has been discussed, leaving out a great deal of 

important contributions to the total energy contained in the non-bonded interactions of separated functional 

groups.  Recently, the calculation of these interactions has moved from a simple electrostatic model in the 
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original formulation, to a more sophisticated approach combining ab initio and EFP method calculations.374  

The choice of performing either full ab initio calculations or EFP calculations is based on the shortest atom-

atom distance between the interacting fragments.  At short ranges (<2.7Å) the non-bonded interactions are 

calculated with the full ab initio method being employed.  For intermediate distances (2.7-4.5Å) the EFP 

method is used, effectively reducing the number of ab initio calculations required and increasing the 

computational efficiency.   

 The simplest case of non-bonded interactions occurs between just two separated functional groups, for 

example G1 and G4.  The non-bonded energy contained in the “super-group” G1G4 can be given by: 

Enb
(1,1)[G1;G4 ] = E(G1G4 ) − E(G1) − E(G4 )        (93) 

E(G1G4) is the supermolecular energy of the two separated functional groups and E(G1) and E(G4) are the one-

body fragment energies.  During the calculation of the supermolecular energy E(G1G4), the two functional 

groups retain their original positions from the complete system M.  This procedure can be carried out to its 

eventual conclusion of all possible pairs of separated functional groups, providing the total two-body non-

bonded interaction energy of the entire system M.   

 In some instances, three-body interactions can play a very important role in chemical systems.376,377,378,379,380  

To account for these interactions a similar approach can be taken by considering the interaction of three 

functional groups, G1, G2 and G3.  The interactions of these three groups is ignored unless two of the three are 

bonded in the full system M.  To give a specific example, consider the case in which G2 is directly bonded to G3, 

giving the three body interaction energy as; 

Enb
(1,2)[G1;G2G3] = E(G1G2G3) − E(G1) −

E(G2G3) − Enb
(1,1)[G1;G2 ]− Enb

(1,1)[G1;G3]
       (94) 

The three body energy is simply the supermolecular energy E(G1G2G3) minus the one-body energy E(G1), the 

bonded energy of E(G2G3) and the two-body non-bonded energies Enb
(1,1)[G1;G2 ]  and Enb

(1,1)[G1;G3] . 

 Using all three of these expressions for the bonded and non-bonded energies, the total energy of the entire 

system, ESMF, can be expressed as a sum of bonded and non-bonded energies: 

ESFM = Ebonded + Enon−bonded          (95) 

The term Enon-bonded includes all of the terms up to nth order.  In practice it has been shown that the inclusion of 

non-bonded terms in the level 3 fragmentation scheme provides the best combination of accuracy and 
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computational efficiency.  The choice of including three-body non-bonded interactions depends on the system 

of interest, with molecular clusters such as water necessitating the inclusion of three-body interactions.   

 The SMF method has some limitations, the most important of which is the inability to break bonds more 

complex than single bonds.  There is also a limitation in the fragmentation of cyclic molecules such as hexane.  

During fragmentation the capping hydrogens may become too close, causing a steric interaction not present in 

the complete system and violating the approximation that fragmentation sites are energetically independent.  

This problem can be alleviated through the use of the so-called ring repair rule120 to effectively avoid such non-

physical interactions.  Active development of the SMF method currently includes a reformulation of the 

polarization interactions to give a more accurate description of highly polar molecular clusters. 

2.7 Divide-and-Conquer Methods 

2.7.1 Original divide and conquer approach 

 The original formulation of the divided and conquer (DC) approach was proposed by Yang18 in 1991.  

Based on the Kohn-Sham (KS) formalism, the DC approach aims to avoid the use of the N/2 KS orbitals and 

instead divide the density of the system of interest into the sum of the densities of the subsystems.  The DC 

formalism was generalized to a more efficient one-electron density matrix approach that is generally applicable 

to ab initio381,382,383,384 and semiempirical methods.385,386  As with other fragmentation methods, the local 

environment of each subsystem is taken into account, in this case through the use of buffer regions surrounding 

each fragment.  Since the method was initially proposed, it has been expanded electron correlation methods as 

well. 387 Nakai’s group 388,389,390,391,392,393,394,395,396,397 and others398,399 made many contributions to further 

development. The main contributors to these enhancements of the DC approach will be discussed, beginning 

with both the original and improved density matrix formulations proposed by Yang. 

  In the KS formalism, the total energy of a system of N electrons in an external field υ(r) can be 

represented using the electron density ρ(r)  as: 

E[ρ] = Ts[ρ]+ υ(r)∫ ρ(r)dr + Exc[ρ]+ 1
2

ρ(r)ρ( $r )
r − $r∫ drd $r +

ZaZb

Raba,b
∑    (96) 

Ts[ρ]  represents the kinetic energy of the noninteracting electron gas with density ρ  in the ground state.  The 

term Exc[ρ]  is the exchange-correlation energy. The final term in Eq. (96) is the nuclear repulsion.  In the 

conventional KS formalism, the energy functional E[ρ] is minimized with respect to the density by satisfying 

the KS equation: 

[ ] )()()()(ˆ
eff

2
2
1 rrrr iiii VH ψεψψ =+∇−=        (97) 
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Veff (r)  is the KS effective local potential and Ĥ  is the KS Hamiltonian.  As in the KS formalism, the DC 

approach uses the electron density as the main variable. However, the DC approach represents the total electron 

density of the full system as a sum of subsystem contributions.   This is accomplished through the use of 

normalized “partition functions”,  

pα (r) = 1
α
∑            (98) 

pα (r)  is a positive weighting function for subsystem α .  More specifically, pα (r)  is large for the subspace 

of subsystem α  and small otherwise.  This leads to an expression for the total electron density of the system: 

ρ(r) = pα

α
∑ (r)ρ(r) = ρα

α
∑ (r)         (99) 

 The partition functions have been determined previously,18 and apparently the density and energy do not 

depend significantly upon the specific form of the partition function.  The density of an individual subsystem 

can now be defined using the Fermi function400 fβ (x) as:  

ρα (r) = 2 pα (r) fβ
m
∑ (εF − εm

α )ψ m
α (r)

2
                  (100) 

where  

fβ (x) = 1+ exp(−βx)[ ]−1
                    (101) 

ψ m
α  represents an eigenfunction that is localized on the particular subsystem α , and εm

α  is the corresponding 

eigenvalue of the subsystem α .  The eigenfunctions ψ m
α  are linear combinations of a set of local basis 

functions. 

ψ m
α (r) = Cjm

α

j
∑ φ j

α (r)
           

             (102) 

 It is the use of localized basis functions for a particular subsystem that allows the DC method to scale nearly 

linearly with system size.  The coefficients Cjm
α  are solutions to the generalized eigenvalue equation, derived 

from the Rayleigh-Ritz variational principle: 

0)( =− αααα ε mm CSH                       (103) 
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The Fermi energy400 εF  from Eq. (98) is determined from 

N = ρ(r)dr = 2 fβ (εF − εm
α )

m
∑

α
∑∫ ψ m

α ρα (r) ψ m
α                  (104) 

N is simply the normalization condition for the electron density.  After solving the preceding equations self 

consistently, the energy expression from Eq. (96) can be expressed in terms of the eigenvalues, 

 

E[ρ] = ε + ρ −ϕ (r) / 2−Vxc (r)[ ]∫ dr + Exc[ρ]+ ZaZb

Raba,b
∑                 (105) 

 ε is an approximation to the KS eigenfunctions, represented by: 

 
ε = 2 fβ (εF −εm

α )
m
∑

α

∑ ψm
α ρα (r) ψm

α                    (106) 

In an effort to improve upon the original formulation, Yang proposed a reformulation of the DC formalism 

based on the one-electron density matrix381. Defined in terms of the KS orbitals, the one-electron density matrix 

can be expressed as: 

ρ(r, ′r ) = 2 ψ m
m

N /2

∑ (r)ψ m ( ′r ) = ρijϕ j (r)ϕ j ( ′r )
ij
∑                  (107) 

The density matrix ρij  is given by the linear coefficients in the expansion of the KS orbitals: 

ρij = 2 CimCjm
m

N /2

∑                      (108) 

The partition matrix for each subsystem can now be defined in the atomic orbital space, with a normalization 

condition that is similar to the original formulation in Eq. (98), 

p ij
α

α
∑ = 1                      (109) 

and constructed using the following rules: 

pij
α =

1
1

2

0

if i ∈α  and j ∈α
if i ∈α  and j ∉α
if i ∉α  and j ∉α

⎧

⎨
⎪

⎩
⎪

                   

(110) 
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Subsystem contributions to the density matrix can now be written as: 

ρij = pij
αρij

α
∑ = ρij

α

α
∑                      (111) 

The expression in Eq. (111) is equivalent to the expression from the original formulation in Eq. (99).  A 

corresponding approximation to the original formulation, using a set of local eigenvectors to approximate the 

density matrix of a subsystem, can be applied to give: 

ρij
α = 2pij

α fβ
m
∑ (εF − εm

α )Cim
α Cjm

α                     (112) 

An analogous expression for the Fermi energy, determined by the normalization, can then be expressed as: 

N = ρijSij = 2 pij
α fβ (εF − εm

α )Cim
α Cjm

α

m
∑

α
∑⎛

⎝⎜
⎞
⎠⎟

Sij
ij
∑

ij
∑                  (113) 

Finally, the analogous expression for the sum of the eigenvalues is written as: 

ε = 2 fβ (εF − εm
α )∑∑ εm

α pij
α∑ Cim

α Cjm
α Sij

= 2 Pij
α fβ (εF − εm

α )Cim
α Cjm

α

m
∑

α
∑⎛

⎝⎜
⎞
⎠⎟ij

∑ Hij

                  (114) 

 The main advantages of the new DC formulation include the removal of the time consuming partition 

function integrals, as well as the general applicability the approach now has to ab initio methods such as Hartree 

Fock.  Analogous expressions for the gradients have been derived from the original formulation as well. 

 The implementation of the DC method described divides a molecular system into various subsystems, each 

described by a set of local orbitals.  To aid in the description of each subsystem, the basis functions of 

neighboring subsystems, or “buffer” regions, are included in each subsystem calculation.  The inclusion of 

buffer regions is determined by a distance based cut-off, Rb.  Any atom that falls inside the sphere created by Rb 

is included as a buffer atom in the subsystem calculation.  By including the atomic basis functions from both the 

subsystem and the buffer region, computational requirements scale by a factor of Nα
3 , where Nα is the number 

of basis functions contained in subsystem α and the corresponding buffer region.  Yang determined that the 

buffer region required to achieve a certain level of accuracy remains constant regardless of the system size.382  

Linear scaling is then possible by fixing the size of the buffer region for each subsystem. 
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 In addition to linear scaling in terms of the computational time required, Yang also proposed a reduction in 

memory requirements by storage of a sparse matrix for the total system.382  This is accomplished using a 

distance based cut-off for matrix elements between atom pairs with an interatomic distance less than Rh.  By 

applying this cut-off the storage requirements of the density matrix become proportional to the size of the 

molecule.  The amount of CPU time required also decreases due to the reduction in matrix element evaluations.  

In addition to the density matrix, both the one-electron core Hamiltonian and Fock matrices are treated in this 

way.  

 Following the two formulations of the DC method in 1995 by Yang, a number of other groups proposed 

extensions to the method to enhance the functionality.  The first to propose such an extension was Merz in 1996 

with his semiempirical MO implementation.385,386  A notable improvement pointed out by Merz was the need 

for overlap between adjacent subsystems.  To illustrate why this is necessary, consider the closed shell Fock 

matrix: 

Fµν = Hµν + (µν | λσ ) − 1
2

(µσ | λν)⎡
⎣⎢

⎤
⎦⎥
Pλσ

σ =1

M

∑
λ=1

M

∑                  (115) 

where the two electron integrals are represented as: 

(µν | λσ ) = χµ
* (r1)χν (r1)∫ ×

1
r1 − r2

χλ
* (r2 )χσ (r2 )dr1∫ dr2                 (116) 

 The density matrix for a particular subsystem, Pα , depends on how the subsystem is defined.  Buffer 

regions are included to reduce the truncation effects of fragmentation, however their basis functions are only 

included during the solution of the SCF equations.  This leads to their exclusion during construction of the 

density matrix, since only basis functions that are part of the subsystem directly, and not contributed by a buffer 

region, are included.  Since the density matrix elements contributed exclusively from buffer region basis 

functions are zero, overlap between subsystems is required to provide these contributions to the density matrix.   

 A number of improvements to the DC formulation of Yang were implemented by the Nakai group, 

including the ability to perform MP2 calculations,388,391 application to delocalized systems,389 the addition of 

Hartree-Fock exchange,390 CC calculations392 and a two level hierarchical scheme.395  The problem of 

overlapping subsystems pointed out by Merz was also overcome in the Nakai implementation by treating each 

atom as a subsystem.  Detailed test calculations were performed and showed that the use of a sufficiently large 

buffer region is adequate to overcome such a small subsystem division.  Even in the case of delocalized 

systems, subsystems consisting of a single atom were capable of producing reasonably accurate results when a 

large buffer region (greater than 10 Å) was considered.389 It was noted, however, that the accuracy of any DC 

calculation can obviously be improved through the use of larger subsystems if desired. 
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 Correlated calculations were improved through the use of a “dual buffer” scheme.391  The first buffer region 

surrounding each subsystem includes the calculation of the correlation energy, while the second layer buffer 

only performs a Hartree-Fock calculation.  This scheme effectively exploits the local nature of electron 

correlation and provides additional reductions in the computational effort for correlated calculations.   

 A dual-level hierarchical scheme395 is built upon the foundation of a dual buffer scheme.  Following the 

same procedure for calculating the correlation energy as in the dual buffer scheme, a second level of 

approximation is introduced by using a small and large basis set for HF and correlated calculations respectively.  

The use of a larger basis set for the correlated buffer calculations provides more accurate energies, while the use 

of a smaller basis set for the HF buffer regions reduces the computational cost for each subsystem calculation.   

2.7.2 The adjustable density matrix assembler approach (ADMA) 

 Developed contemporarily with the divide and conquer method, the adjustable density matrix assembler 

approach divides the density of a molecular system using a density matrix approach.  Originating from a similar 

approach called the molecular electron density lego approach401,402 (MEDLA), and inspired by earlier work by 

Michl403 and Stoddart404, the ADMA405,406,407,408,409,410 method uses the idea of a fuzzy-set to remove any 

discontinuities between fragments, circumventing the need for explicit capping or other such bond conserving 

approaches.  Using a density matrix formalism allows the ADMA approach to be applied to many modern ab 

initio methods.  The most recent formulation of the ADMA approach will be discussed, as well as recent 

improvements such as the inclusion of point charges during individual fragment calculations. 

 The ADMA approach expresses the electron density of a molecular system in terms of a sum of 

contributions from individual fragments.  Consider the exact total density of a molecule at a given nuclear 

configuration: 

ρ(r) = Pijϕi(r)ϕ j (r)
j=1

n

∑
i=1

n

∑                     (117) 

where  ϕ i (r) and ϕ j (r)  are atomic orbitals (AOs).  To rewrite this expression in terms of a summation of 

smaller contributions, the molecule of interest must be divided into a set of mutually exclusive “families” f k 

where k=1,…,m and m  is the total number of families.  Division of AOs among families is accomplished 

through the use of a membership function m k(i) such that: 

mk (i) = 1
0

if AO φ(r) is centered on one nuclei of set f k

otherwise

⎧
⎨
⎪

⎩⎪
                (118) 

Each fragment k then has a density matrix defined by: 
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Pij
k =

Pij

1
2

0

if both ϕi  and ϕ j  are centered on a nucleus of fk

if one of ϕi  and ϕ j  are centered on a nucleus of fk

otherwise

⎧

⎨
⎪

⎩
⎪

               

(119) 

This scheme allows for an exactly additive decomposition of the total density matrix.  To illustrate this, 

consider a molecular system M containing nine families: 

M = f1 f2 f3.... f9                      (120) 

The interactions of these nine families can be artificially represented in matrix form: 

1 2 3
4 5 6
7 8 9

                      (121) 

Any nearest neighbor families are taken to have a strong interaction, for example, family 4 has a strong 

interaction with family 5, but not family 6.  Building the total interactions from family 4, a reduced form of the 

interaction matrix can be written as:  

1 2
4 5
7 8

                      (122) 

which includes all families with a strong interaction with the central family 4.  Of the other families considered 

in this reduced system, families 2, 5 and 8 contain dangling bonds that were previously connected to families 3, 

6 and 9 respectively.  These bonds are capped with hydrogen atoms, however, the size of each family (in this 

case the family represented by Eq (122)) is chosen to be large enough that the corresponding orbitals from the 

capping hydrogen have negligible contributions to the orbitals on the central family 4. This allows the capping 

hydrogen orbitals to be excluded from construction of the density matrix.  The contribution of the reduced 

system in Eq (122) to the total density matrix can then be written as:  
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1 *
2 *

3 0
* * 0 4 * 0 * * 0

* 5
0 6
* 7
* 8
0 9

                   (123) 

Each asterisk represents a contribution to the total density matrix created by interactions contained in the 

reduced subsystem of Eq (122).  Every interaction is scaled by 0.5 and all other off diagonal contributions are 

zero.  This procedure can then be repeated, assigning each family as the central family and building the 

corresponding reduced systems.  Following this procedure through to completion, a matrix of fragment 

contributions to the total density matrix is obtained:  

1 * 0 * * 0 0 0 0
* 2 * * * * 0 0 0
0 * 3 0 * * 0 0 0
* * 0 4 * 0 * * 0
* * * * 5 * * * *
0 * * 0 * 6 0 * *
0 0 0 * * 0 7 * 0
0 0 0 * * * * 8 *
0 0 0 0 * * 0 * 9

                   (124) 

Each asterisk now represents a sum of two scaled contributions.  This relatively sparse fragment interaction 

matrix is then used to construct a good approximation to the total density matrix.  The example shown is overly 

simplified; however, it provides a reasonable illustration of how the ADMA method can reduce the 

computational cost required to compute the total density matrix. 

 In general the fragment choice in the ADMA approach is unimportant, however in practice chemically 

reasonable fragments are chosen.  For example, when fragmenting a protein, a set of chemically sensible rules 

are followed:  (i) all heavy atoms double bonded to an oxygen atom are considered to be fragments; (ii) if a 

heavy atom is part of an aromatic moiety, the entire aromatic region defines a fragment; (iii) specific chemically 

important substituents such as the CONH2 groups of asparagine and gluatamine are defined as a fragment.  

After the initial fragment choice, in a manner similar to the MTA method, a sphere of a user defined radius is 

used to include neighboring families.  If a single atom belonging to another nuclear family falls within the 

radius around the fragment of interest, then all atoms in that family are included.  This includes any atoms that 
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are not directly bonded to the fragment of interest.  All dangling bonds are considered at this point and capped 

using hydrogen atoms. 

 Once the fragment of interest and the included surroundings are defined, the density matrix contribution can 

be calculated for all defined fragments.  The accuracy of the ADMA approach may be improved either by 

choosing larger fragments or by increasing the radius of inclusion for neighboring nuclear families.  The 

composite fragment density matrix can then be used to calculate a number or properties including the total 

energy, dipole moment, electrostatic potential and total density matrix for the molecular system. 

 The accuracy of the ADMA approach depends on how well the local environment, determined by the radius 

of inclusion, is described during each fragment calculation.  The most obvious way to improve the description 

of the environment is to increase the radius of inclusion of neighboring atoms.  It was shown that a radius of up 

to 10 Å is needed to obtain sufficiently accurate results (errors of less than 1 kcal/mol).411  Unfortunately, this 

decreases the efficiency of the approach, particularly for large molecules.  The solution was implemented by 

Mezey and Exner in 2006, termed the field-adapted ADMA (FA-ADMA)412 approach.  By using a smaller 

radius of inclusion coupled with a more approximate description of far separated atoms, the FA-ADMA 

approach effectively increases the accuracy of the original ADMA approach without any significant increase in 

computational cost.   

 The most effective approximation to the surroundings of fragments in the FA-ADMA was determined to be 

partial charges based on Mulliken or Löwdin charges.  The computational scheme employed begins with a 

standard ADMA calculation which is used to obtain the partial charges of all the atoms present in the fragment 

calculation.  During subsequent fragment calculations, these partial charges are included, gradually increasing 

the number or partial charges until the full system is represented.  The entire process is then started anew, using 

all of the partial charges obtained during the previous step, and continued in an iterative process until the 

charges and densities for all fragments do not change up to a certain threshold.  Atoms present in the point 

charge description of the environment that have been replaced by capping hydrogens in the fragment (so-called 

junction atoms) are represented by a 60% scaling of the total Mulliken charge or an 80% scaling of the total 

Löwdin charge, aiding in the reduction of error incurred by over-counting these atoms during the ab initio 

portion of the FA-ADMA calculations. 

 Additional improvements to the ADMA approach have been implemented in recent years.  These include 

the use of an alternative, more general fragmentation scheme413 , the use of the ADMA density matrix as an 

initial guess for ab initio SCF calculations on large molecules414 and an improved description of the junction 

atoms at the edges of the surroundings encompassed by the radius of inclusion.415 

2.8 Other Methods 
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 Das et al.416 in 2003 proposed the ab initio fragment orbital-based theory (AFOT), in which the total wave 

function is constructed from orbitals of fragments, which are formed and computed without capping.  

   The integrated multi-center molecular orbital method (IMiCMO) formulated by Sakai and Morita 150,417 for 

molecular clusters relies on the addition of the properties of target molecules computed in the buffer region of 

adjacent molecules, while the effect of the rest of the system is computed with point charge interactions. In 

addition to the total energies, forces and second derivatives have also been developed. 

   Mata et al.418 in 2009 suggested a model to estimate the excitation energies of large systems by diagonalizing 

the total Hamiltonian Hij, i,j=1,…,N where N is the number of fragments. In this Hamiltonian only the diagonal 

elements Hii are computed quantum-mechanically (for each fragment, electrostatically embedded in the field of 

others) while off-diagonal elements are estimated semi-classically with the dipole-dipole interaction model. 

This model takes into account the excitonic coupling in molecular clusters and it has been used to compute the 

first electronic absorption band of water. 

   Following the same methodology as the SMF method, Bettens et al., 419,420,421 have developed an energy based 

fragmentation method based on the idea of isodesmic reactions. 422 Molecules are divided into groups in a 

similar fashion to the SMF method and capped with hydrogens. The main difference between the two methods 

is how the groups are recombined into fragments.  In many cases the two fragmentation schemes produce the 

exact same fragments.  However, for higher levels of fragmentation such as SMF level 3, the Bettens method 

can produce a different fragmentation scheme.  The fragments produced in these cases are typically smaller in 

size than those produced by the SMF method, but many more fragments are formed.  In a specialized case 

provided by Bettens421, fragments formed are one group size smaller than the SMF method fragments.  In this 

instance SMF produces three fragments, while the Bettens method produces eleven fragments.   

 In the linear-scaling three-dimensional fragment method for large-scale electronic structure calculations 

(LS3DF) developed by Wang et al.423 in 2008, the energy is constructed as a sum of additive contributions of 

small conglomerates of fragments in the self-consistent Coulomb potential determined at each iteration by 

solving the Poisson equation for the total density; the conglomerates are used to reduce the error caused by the 

caps added to dangling bonds. This method has been applied to CdSe quantum dots that contain up to 2616 

atoms.  

3. Software and Parallel Computing 

 Developing efficient software is a very important aspect of computational and theoretical chemistry. Many 

research groups concentrate on method development using some “in-house” programs or locally modified 

versions of commonly used software. Although this often results in important advances in method development, 

such results are often not reproducible by other scientists without reproducing the code, an arduous process. 

Moreover, there is a growing need by researchers in adhacent fields, such as biochemistry material science and 
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engineering, computational biology and others to use ab initio methods for practical calculations. It is clear that 

there is a demand for easy-to-use software that can be run by users on their own. This need is at present is only 

partially filled by software development of fragment-based methods.  

 There are two types of software: programs to perform calculations, and software to aid in input file 

preparation and to analyze and visualize results. For the first group, the most fragment-friendly program at 

present is the general atomic and molecular electronic structure system (GAMESS), 424,425 which has EFP, 

FMO, ELG and DC in the production version. Q-Chem supports EFP, while ABINIT-MP426,427 and PAICS428 

are FMO programs. PEACH426 is an MD program used in conjunction with ABINIT-MP to run FMO-MD 

simulations. MTA is based on locally modified versions of GAMESS, and it has a Web interfaces. 429,430 Some 

recent X-Pol developments use a locally modified version of GAMESS. 

 GAMESS has MacMolPlt431 as its graphical interface, although it has limited capability specifically for 

fragment methods. Facio432 has a very elaborate Windows GAMESS/FMO interface for input file preparation 

and result visualization; it has an automatic fragmentation engine for dividing polypeptides (including proteins), 

nucleotides (including DNA), saccharides or any combination thereof into standard fragments. Biostation427 is a 

graphical interface developed in conjunction with ABINIT-MP for FMO calculations. 

 One of the important advantages of fragmentation methods is that they are frequently inherently scalable to 

many compute nodes and cores. The FMO method in GAMESS presents a nice example of this, since it has 

been implemented with the associated distributed data interface (DDI)433,434 and its generalized, multi-level 

partner GDDI.1 DDI facilitates the distribution of large arrays across many compute nodes, while GDDI makes 

it possible to use both coarse graining and fine graining. The coarse-grained parallelism allows the calculation 

(for example) of the contribution from each fragment to the total energy on a different node, while the fine-

grained parallelism occurs among the cores within each node. This approach has enabled FMO calculations to 

take advantage of virtually perfect scaling on tens of thousands of cores.435 While the example presented here is 

for FMO in GAMESS, most of the fragmentation methods discussed here have the potential for similar scaling. 

4. Applications  

 The applications below are described in subsections according to the application field. 

4.1 Homogeneous clusters and explicit solvent treatments 

 Fragment methods are a powerful alternative to force fields in running molecular dynamics simulations (in 

fact, some ab initio based methods are thought of as new generation force fields46,73,312). Of course, MD 

simulations require very accurate gradients, and in some cases the gradient used in the initial MD simulations 

had questionable accuracy.264 Also, during QM MD simulations, there is no enforced bond definition, and bonds 

can be broken along the trajectory. If this happens, the pieces of the broken fragment can move away from each 
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other and attach themselves to other fragments. If this happens, the fragment definition becomes inappropriate. 

The dynamic fragmentation267 method is designed to address this issue: When a fragment breaks into pieces, the 

fragment definition is changed on the fly; this can, however, result in a discontinuity on the potential energy 

surface. Some fragment methods like EFP have frozen fragment geometries, and do not suffer from this 

problem. On the other hand, rigid fragments cannot adjust their structure to the environment, which limits their 

accuracy.  

 Many methods assume that fragments do not interact very strongly. But a small inter-fragment distance can 

cause large charge transfer and other strong interaction. In the methods that use multipole models to describe 

the electrostatics, the short-range multipole interaction can break down due to the neglect of charge penetration; 

multipole screening 436,237 can be used as a remedy.  

 Nevertheless, fragment based methods can take into account many-body polarization and charge transfer, 

and thus are new generation force fields. In charged solutes these effects of the polarization and charge transfer 

between the solute and solvent are large and difficult to neglect. 

 One important application of fragment methods is the investigation of chemical reactions of small molecules 

in solution with MD, with solvent molecules represented as fragments, on a par with the solute. Sato et al.437 

applied the FMO method to study a SN2 reaction of the hydrolysis of the methyl diazonium ion, and found two 

types of reaction pathway. Solute-solvent charge transfer plays a very important role in this reaction and the real 

trajectories are quite different from the textbook images of the SN2 reaction. Sato et al.438 used the FMO method 

to study the amination of formaldehyde in water and found that this reaction proceeds via a stepwise mechanism 

through a zwitterionic intermediate, not by a concerted mechanism.  

 Pomogaev et al. 439 employed ELG to compute the absorption spectra for explicitly solvated estradiol and 

tryptophan in the Trp-cage protein, using snapshots from classical MD simulations. Kistler and Matsika440 

applied the multi-layer FMO-MCSCF approach to study solvatochromic shifts of uracil and cytosine, using 

snapshots of classical MD simulations. They showed by comparison of various methods that explicit solvent 

methods including the use of QM or MM to describe the solvent produce similar results, whereas the 

continuum-based PCM for some excited states gives significantly different and parameter dependent results.  

 Fujiwara et al.441 applied the FMO method to MD simulations of Zn2+ solvated by a droplet with 64 water 

molecules and reproduced the experimental value of the first peak in the radial distribution function to within 

0.01 Å.  

 Several EFP1 and QM/EFP1 studies have been devoted to the investigation of structures and energetics of 

small to medium water clusters185,187,442. Structural properties of bulk water188 and origins of enhancement of the 

dipole moment in bulk water 443 were also investigated. Another important area of application of QM/EFP1 
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methodology is hydration of various ions, including halogen444 and molecular anions445 446, as well as metal447 
448 and molecular449 cations.   

 Hydration and dissociation of ionic species were investigated by Peterson and Gordon450 for NaCl and by 

Yoshikawa and Morales 451 for LiOH. Solvation effects on the electronic properties of a solute, such as 

electronegativity, hardness, HOMO-LUMO gaps, were investigated for ammonia452 and a set of polyatomic 

molecules and ions.453 

 Solvent effects on neutral-zwitterionic equilibrium of aminoacids were also studied with QM/EFP1. Day et 

al. 454 investigated small (up to ten waters) clusters of glutamic acid and water. Solvation of glycine was studied 

by Bandyopadhyay and Gordon191. Solvation of alanine by increasing number of water molecules was studied 

by Mullin and Gordon.455,456 Song et al. investigated solvent effects on the conformational potential energy 

surfaces (gauche versus trans conformations) of acetylcholine and acetylthiocholine ACh and ATCh.457 

 The EFP2 model has been used to investigate intermolecular interactions in complex molecular clusters. 

Adamovic and Gordon showed that water-methanol mixtures are heterogeneic at the microscopic level 458. The 

same authors investigated interactions in styrene clusters459, where both H-bonding and π-bonding structures 

take place. π-stacking interactions were investigated in benzene dimer460, substituted benzene dimers461, and 

benzene-pyridine dimers462; an intriguing competition between H-bonding and π-π bonding was observed in 

water-benzene clusters463. Interactions in π-stacks of DNA base-pairs were studied by Ghosh et al196. Shortening 

of the B-N bond in H3BNH3 on going from the gaseous to the solid state were explained using the EFP2 

method.464 

 The QM/EFP method has also been used to investigate the electronic excited states of chromophores in 

solution. The spectroscopy of enzyme active sites in the presence of several EFP1 waters was studied by 

Krauss465,466. Aqueous olvation of the lowest singlet excited state of Coumarin 151 was investigated with the 

CIS/EFP1 method.171 The absorption spectrum of acetone in water was modeled with TD-DFT/EFP1 by Yoo et 

al.172 Ab initio molecular dynamics with CASSCF/EFP1 was used to investigate the dynamics of solvated 

excited states in coumarin 151 467 and excited state hydrogen transfer in 7-azaindole.468 The EFP2 model 

combined with CIS(D) was used to investigate solvatochromic shifts of singlet and triplet electronic states of 

para-nitroaniline in water, dioxane, and cyclohexane by Kosenkov and Slipchenko.174 A combination of the 

EOM-CCSD for ionization potentials (IP) method with EFP allowed accurate description of vertical ionization 

energy (VIE) of thymine in bulk water.176 Intrestingly, the first hydration shell increases VIE by ~ 0.1 eV, while 

subsequent solvation lowers ionization energy and the bulk value of the solvent-induced shift of thymine’s VIE 

is approximately -0.9 eV. 

 Influence of water environment on energetics and pathways of various reactions were investigated with 

QM/EFP1 methods. The energetics of the Menshutkin reaction between ammonia and methyl bromide in a 
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presence of increasing number of water molecules were studied by HF/EFP1189. Adamovic and Gordon showed 

that MP2/EFP1 provides accurate description of hydration effects on structures and barriers in SN2 reaction 

between Cl- and CH3Br.190 The EFP solvent model was also used to study the kinetics of the hydrogen 

abstraction from H2O2 by OHO·. 469 The reaction mechanism of phosphate monoester aminolysis in aqueous 

solution was investigated with DFT/EFP1 by Ferreira et al. 470  The role of solvation on the relative 

thermodynamic stabilities of cis- and trans-platinum dichloride by in aqueous solution was investigated by Hush 

et. al. 471  The energy profiles for the reaction OH- + CO2 → HCO3
- in the presence of 30 water molecules were 

investigated by Nemukhin et al. 472 In another study by the same authors,473 The QM/EFP method was used to 

model the reactions of hydroxymethyl radical (CH2OH)-C with glutathione tripeptide (GSH) and with 

methylthiol( CH3SH) in water.  

 Jose and Gadre474 applied the MTA method to investigate the properties of Li clusters and CO2 clusters.475. 

Mahadevi  et al.476 studied benzene clusters using the MTA method. Yang et al.477 employed GEBF to study 

water clusters. 

4.2 Biochemical Systems 

 Biochemical systems are a major application field for fragment methods, because the molecules in biology 

are large, often containing thousands of atoms. Fragment methods have several competitors, one is force fields; 

another is electronic structure approaches that rely either on semi-empirical approximations478,479 or multi-layer 

approaches, like ONIOM144 and QM/MM. 480  In addition, purely ab initio methods are also becoming 

increasingly efficient.481,482  

 Force fields are highly tuned for biochemical calculations, and are ubiquitously used. Their drawback is that 

frequently they are not polarizable and do not account for charge transfer (EFP and SIBFA are examples in 

which both are considered), and in addition, they are often difficult to use in practice by non-experts if the 

system contains non-standard parts for which no precomputed parameters are available. Force fields do have a 

major advantage of their speed and the ability to use them for molecular dynamics simulations, often essential 

to describe biological processes. On the other hand, ab initio based methods, including fragment-based 

approaches can incorporate full many-body polarization and charge transfer, and they do not rely on the need 

for parameters (aside from basis sets); of course the associated cost is an increased amount of computations. 

4.2.1 Polypeptides, proteins, saccharides and oligoamides 

 Jensen and coworkers483 ,484, 485, 486, 487, 488, 489 have successfully applied the QM/EFP approach with a buffer 

region to predicting pKa values (Fig. 6) of ionizable residues in proteins. Xie et al.490 employed the X-Pol 

method at the AM1 level to perform a 50 ps MD simulation of bovine pancreatic trypsin inhibitor in water with 

periodic boundary conditions. 
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 Komeiji et al.491 applied the FMO/MP2/6-31G* method to analyze the dependence of the change in the 

electronic structure of ubiquitin (PDB: 1UBQ) on the thickness of solvating water layers. Five configurations 

corresponding to local minima were averaged. He et al.492 applied the FMO/MP2/PCM/6-31G* method to study 

the ability of FMO and empirical dispersion to discriminate between the native and decoy structures for the 

Pin1 WW domain (PDB: 1I6C) and the Co repressor protein (PDB: 1ORC).  Sawada et al.493 used the 

FMO/RHF/PCM/6-31G* method to optimize the structure of helical heparin oligosaccharides (PDB: 1HPN). 

They found that the optimized structure is in good agreement with the NMR experiment. In addition, a 

comparison of the FMO predictions with those of the force field revealed the differences pointing to possible 

deficiencies in the force field model. 

 Huang et al.494 applied the KEM with MP2/6-31G** to analyze the interactions in vesicular stomatitis virus 

nucleoprotein (PDB: 2QVJ) containing 33,175 atoms. Duan et al.495 used the MFCC method at the HF, B3LYP, 

and MP2 levels with the 6-31+G* basis set to investigate the interaction of HIV-1 protease with the water 

molecule that bridges the flaps of the protease with the inhibitors. Dong et al.496 applied the GEBF method at 

the DFT/6-311+G** level to study the formation of single and double helices of aromatic oligoamides. 

Deshmukh et al. applied the MTA method to study intramolecular hydrogen bonding in sugars497 at the MP2/6-

311++G(2d,2p) level and polypeptides498 with DFT/6-311++G** level. 

4.2.2 Protein-ligand binding 

 A number of applications of the FMO method to various protein-ligand complexes have been performed. 

Fukuzawa et al. 499,500,501 studied human estrogen receptor and showed good correlation with the experimental 

binding energies. Sawada et al. 502,503,504,505 performed a number of FMO applications to influenza virus 

hemagglutinin and showed the importance of considering the full-sized hemagglutinin upon the binding 

energies. A very detailed analysis506 of the recognition patterns of sialosides by avian and human influenza 

hemagglutinins was performed using MP2/PCM/6-31G*, resulting in good agreement with the experimental 

binding energies.  In another study507 at the same level it was shown that binding of influenza A virus 

hemagglutinin to the sialoside receptor is not controlled by the homotropic allosteric effect (i.e., hemagglutinin 

trimerization does not not increase the binding energy per ligand). Future mutations508 of the influenza virus 

were predicted by a combination of hemadsorption experiment and quantum chemical calculations for antibody 

binding, and details of the ligand binding were investigated. 509,261 

 Yamagishi et al. 510,511,512 performed an analysis of the functions of key residues in the ligand-binding pocket 

of vitamin D.  Ito et al. 513,514,515 analyzed the role of the functional groups in retinoid X receptor and studied the 

influence of mutations upon the transcriptional activation. Nakanishi et al.516 applied FMO/MP2/6-31G* to 

elucidate the molecular recognition mechanism in the FK506 binding protein. A number of other protein-ligand 

complexes517,518,519,520,521,522,523,524,525,526,527 as well as systems involving nucleic acids528,529,530,531 were also 

studied with the FMO method. 
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 Taking advantage of the FMO method in the GAMESS and ABINIT-MP packages, several pharmaceutical 

companies have used it for drug-design related research. Ozawa et al. applied the FMO MP2/6-31G* approach 
532 to demonstrate that CH/p hydrogen bonds determine the selectivity of the Src homology 2 domain to tyrosine 

phosphotyrosyl peptides. This was followed by a study533 that showed the importance of CH/p hydrogen bonds 

in rational drug design as exemplified by leukocyte-specific protein tyrosine kinase. Fujimura and Sasabuchi534 

applied FMO/MP2/6-31G* to elucidate the role of fluorine atoms in a fluorinated prostaglandin agonist. Ohno 

et al.535 employed FMO MP2/6-31G and discussed the strong correlation of pair interaction energies (PIEs) with 

the drug’s potency.  

 The MFCC method has been applied to a number of ligand binding studies.536,537,538,539,540 Huang et al.541 

employed KEM to study the interaction of aminoglycoside drugs and ribosomal A site RNA targets. Using the 

ELG method, Orimoto et al. 542 investigated the electronic structure of B-type poly(dG)·poly(dC) DNA. 

4.2.3 Quantitative structure-activity relationship (QSAR) 

 It is very difficult to evaluate the free energies of binding from first principles with the accuracy of 1 

kcal/mol, which is often the difference between several ligands in protein-ligand binding. In practical ab initio 

calculations, there are not only basis set and wave function limitations and the difficulty in describing solvent 

and counter-ions, but also the entropic contribution at room temperature requires proper configurational 

sampling, which at present is usually done with MD and can require long-time trajectories.  

 

 In QSAR studies, one introduces empirical factors by taking computed physical quantities, { }ix called 

descriptors as arguments of a function f xi{ }( ) (often, f is the binding energy), the coefficients in which are 

optimized for some training set of systems with f xi{ }( ) known experimentally. The obtained relation is used 

to predict properties of compounds outside the training set, for which { }ix  are computed. The underlying 

condition for successful QSAR studies is that descriptors should correlate with the desired property. Because of 

the fitting nature of QSAR, various completely unrelated methods can be used to compute descriptors. 543 For 

example, some descriptors can be computed from gas phase ab initio based calculations, the solvation effects 

can be estimated with the Poisson-Boltzmann model, and the entropic factor descriptor can be obtained from 

other simple models such as the number of rotatable bonds. 544  

 Fragment-based methods seem to be a perfect match for fragment-based drug discovery (FBDD)545 and they 

can be utilized to provide descriptors in QSAR. In particular, a very useful set of descriptors is given by the pair 

interactions between ligands and constituent parts of the protein (residues or residue fragments). Because the 

FMO method provides PIEs as a by-product of the calculations, it is straightforward to apply FMO to QSAR 
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studies, as reviewed by Yoshida et al. 546 In other one-step methods such as KEM, MFCC or PMISP methods 

one can have similar pair interaction energies, whereas two-step methods operate with the properties of the 

whole system. Ishikawa et al. 547 discussed the basis sets effects upon the PIEs.  

 Yoshida et al. 548 employed the FMO RHF/6-31G method in QSAR studies of cyclic urea type HIV-1 PR 

inhibitors, using the sum of the residue fragment – ligand PIEs and the charge transfer between the ligand and 

protein from FMO calculations as descriptors. They found a strong correlation between the FMO binding 

energy in vacuum and the sum of protein-ligand PIEs, thus only the former was used.  

 Because the foregoing strategy was also used in further studies, it is instructive to comment on the relation 

between the sum of the protein-ligand PIEs PLEΔ  in the protein-ligand complex PL and the binding energy 

bEΔ computed as the difference between the energies of the complex PL and the isolated protein (P) and ligand 

(L). Both PLEΔ  and bEΔ  can be used as descriptors; the former is often used as an approximation and 

replacement of the latter. For simplicity, the deformation energy, i.e., the change in the geometry of the protein 

and the ligand, when comparing their isolated and complexed minima, is implicitly included in the following 

derivations.516 

ΔEb = EPL − EP − EL =

′EI
P(PL)

I∈P
∑ + ′EI

L(PL)

I∈L
∑ + ΔEIJ

P(PL)

I>J
I ,J∈P

∑ + ΔEIJ
L(PL)

I>J
I ,J∈L

∑ + ΔEIJ
PL(PL)

I∈P,J∈L
∑

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
−

′EI
P

I∈P
∑ + ΔEIJ

P

I>J
I ,J∈P

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
− ′EI

L

I∈L
∑ + ΔEIJ

L

I>J
I ,J∈L

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

               (125) 

ΔEPL = ΔEIJ
PL(PL)

I∈P,J∈L
∑  

 P(PL) indicates the partial properties of P in the complex PL (and, similarly, for L). The difference is then 
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where (A = P or L) 
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Δ ′EI
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A
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Δ ′EI
A(PL)  and ΔΔ ′EIJ

A(PL)  are the internal fragment and pair interaction energies, respectively, and are 

affected by the polarization and deformation in the complex formation. In other words, 

ΔEb − ΔEPL = ΔEP
pold+def + ΔEL

pold+def                    (128) 
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 The difference between the binding energy bEΔ and the sum of the pair interaction energies PLEΔ  is 

simply the destabilization polarization (denoted as “pold”) plus the deformation energy of the protein and ligand. 

ΔEA
pold+def  does not include all terms in the polarization. The polarization process (see PIEDA297) between 

isolated systems (P and L here) is divided into two contributions: first, each of the two interacting systems is 

destabilized relative to its own lowest energy state due to the polarization by the other (this gives the 

destabilization polarization). Consequently, the polarized systems interact, and this interaction energy includes 

the electrostatic energy, whose role is the stabilizing polarization energy, exchange-repulsion, charge transfer, 

dispersion and higher order terms. These terms are separable in the EDA55 or its FMO extension, PIEDA297 

when A are individual fragments. 

 When the polarization and deformation energies vary considerably from ligand to ligand (for instance, when 

comparing ligands with different charges), the use of PLEΔ  in place of bEΔ  may lead to errors in consequent 

QSAR, and care should be taken to use a proper training set. Finally, for completeness, it is useful to separate516 

the sum of the polarization and deformations energies given by the difference in the energy of the protein or 

ligand in the complexed and isolated states. 
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AE~  is the energy of isolated  protein or ligand at the geometry in the complex, whereas AE  is computed at the 

geometry of A in its minimum. This analysis can be used for any type of interactions, not just those between a 

protein and a ligand, and more subsystems can be defined. In addition, the FMO method provides all details of 



www.manaraa.com

 

 

74 

individual fragment contributions in the total sums, for further insight regarding drug design and other 

applications. Moreover, this analysis defines the protein and ligand destabilization polarization energy pold
AEΔ  

(often neglected in MM studies), as well as the deformation energy def
AEΔ  (typically included). The stabilizing 

polarization (pols) and charge transfer, as well as other types of interactions are included in the sum of the 

protein-ligand PIEs ΔEPL . The former can be estimated516 using the simple response relation 

ΔEA
pols ≈ −2ΔEA

pold  (see actual calculations297 for numerical justification), which leads to the total polarization  

EA
pol = ΔEA

pold + ΔEA
pols = −ΔEA

pold                                                                                                     (131) 

This way, the total polarization energy of the protein and ligand in their complex can be estimated, which 

requires 5 calculations (complex, plus protein and ligand, both at the geometry in the complexed and isolated 

states).  

 Fischer et al. 549 improved the scoring functions representing the binding energy for human estrogen 

receptor subtype a and human retinoic acid receptor of isotype g, using atomic charges from FMO calculations 

at the RHF/STO-3G level and concluded that such quantum scoring functions (QSF) describe the electrostatics 

accurately, and that QSF performs better than force field analogues. Yoshida et al. 550 applied FMO/RHF/6-31G 

to QSAR studies of the binding affinity of substituted benzenesulfonamides with carbonic anhydrase, noting the 

difficulties in modeling Zn2+-containing systems. Hitaoka et al. 551 used FMO/MP2/6-31G in QSAR studies of 

the binding affinity of sialic acid analogues with influenza virus neuraminidase-1, where they divided the 

protein into three binding pockets and used the sums of PIEs for these subsystems as separate descriptors.  

 Munei et al. 552  used FMO/RHF/6-31G in QSAR studies of the binding affinity of substituted 

benzenesulfonamides with carbonic anhydrase. Mazanetz et al.543 used FMO/MP2/6-31G* in QSAR studies of 

cyclin-dependent kinase 2 inhibitor potency and did a careful comparison of FMO and MM derived QSAR 

models popular in drug design industry. They found that the FMO outperformed all three MM based QSAR 

models. 

4.2.4 Excited states and chemical reactions 

 Excited states and chemical reactions are an attractive application field of ab initio based methods. Ishida et 

al.553 using the FMO method at the RHF and MP2 levels with the 6-31G(d) basis set analyzed the mechanism of 

the chorismate mutase reaction. Nakamura et al.554 applied the FMO/MP2/6-31G method to clarify the role of 

K151 and D180 in L-2-haloacid dehalogenase from Pseudomonas sp. YL (PDB: 1ZRM). Pruitt et al.286 using 

the multi-layer open shell (MP2/6-311G**: CR-CC(2,3)/3-21G) FMO method evaluated the enthalpy of the 

reversible addition-fragmentation chain transfer (RAFT) reaction involving radical species. 
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 In treating excited states with the FMO method, a frequently used approach is to apply an excited state 

calculation such as CI (or TDDFT) to a single fragment (chromophore), computed in the electrostatic field due 

to the other fragments, evaluated using RHF (or DFT). In this method (called FMO1, indicating that only 

monomers are computed) the electrostatic effect upon excited states is considered, which is often the major 

effect of the environment (i.e., the rest of the system excluding the chromophore), and higher order effects such 

as charge transfer can be considered with including dimer calculations of excited states (FMO2).  

 Mochizuki et al. did several FMO1 studies. They computed 555 red fluorescent protein with CIS(D)/6-31G(d), 

they simulated emission spectra of bioluminescent luciferases556 with CIS(D)/6-31G, and they also performed 

CIS(D)/6-31G(d) calculations on the family of red  557 as well as blue and yellow558 fluorescent proteins. Chiba 

et al. computed the yellow photoactive protein (PDB: 2PHY) both in gas phase281 and solution281 using 

FMO/TDDFT/6-31G(d), considering both FMO1 and FMO2 types of excitations. Ikegami et al.559 analyzed the 

asymmetric excitations in the left and right branches of the photosynthetic reaction center of Blastochloris 

viridis (PDB: 1PRC) using the FMO method, where the asymmetry was studied for monomers and selected 

dimers at the CIS/6-31G(d) level. Milne et al.560 applied FMO at the FMO1-TDDFT/6-311G(d,p) and FMO2-

MP2/6-311G(d,p) levels to investigate the role of AMP protonation in firefly luciferase pH-sensitivity.  

4.3 Solid State Applications 

 For systems with perfect periodicity, cluster based approaches compete with the methods employing 

periodic boundary conditions, which often use plane waves as a natural basis set for these systems. The latter 

group of methods is ultimately better, however, given the practical limitations of the existing theories and 

computer programs, and the difficulty in deriving and implementing high level of calculations for them often 

drives users to use cluster based approaches.  

 An important question is how relevant is the electron delocalization for a property one is interested in? 

Some properties, such as band gaps and the density of states, appear to require a consideration of the whole 

system, and fragment-based methods are at a serious disadvantage. However, there are ways to account for the 

delocalization at the final step by building the Fock matrices for the whole system, as is done in FMO-MO, 

FMO-LCMO and FMO/F, or in a different way in ELG. On the other hand, one is often interested in some local 

properties in periodic systems, such as the interactions determining their global properties, and for this, pair 

interactions in the FMO and KEM methods were found to be useful as described below. Applications of 

fragment-based methods to p-conjugated systems325 and graphene335 suggest their usefulness even for such 

delocalized systems. 

4.3.1 Crystals, surfaces and nanomaterials 

 Huang et al.561 applied the KEM/MP2/6-31G(d,p) method to investigate the interactions in the crystal of two 

molecules TDA1 and RangDP52. Fukunaga et al.562 applied the FMO/TDDFT/6-31G(d,p) method to investigate 
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the role of intermolecular interactions upon the excitations energies in three isomers of quinacridone crystals. 

To facilitate calculations and make them more realistic, an embedding model was used, in which a cluster of 

quinacridone molecules was immersed in the field of a large number of atomic charges, computed with the 

BLYP functional and periodic boundary conditions, with the 6-31G(d,p) basis set.  

 Faujasite zeolites were modeled by Fedorov et al.231 using the FMO/RHF/6-31G(d) method. It was found 

that the adsorption energies can be quite accurately modeled with the FMO method, despite a large number of 

detached bonds. The fragmentation scheme is shown in Fig. 7. The phenol molecule occupies a place in the 

zeolite pore near the aluminum-containing fragment with acidic hydrogens.  

 Zhang et al. 563 applied the ELG RHF/STO-3G method to study the adsorption of Si and C chains onto 

unfaulted and faulted Si(111) surfaces. Chen et al. 564 calculated the electronic structure of the single-wall 

pristine boron nitride (BN) and boron nitride-carbon (BN/C) heterostructured nanotubes using ELG at the 

RHF/6-31G level. 

 Fedorov et al. 565 applied the FMO method at the B3LYP/3-21G(d) level to optimize the structure of silicon 

nanowires of diameter 1.2 and length 4.8 (nm), and showed that FMO optimized structures closely agree with 

those by PBC methods and experiment, suggesting that geometry can be optimized with reasonable results 

using fragment methods. 

4.3.2 Polymers 

 Many applications of fragment-based methods are performed with the ELG method, which is particularly 

suited for (although not limited to) linear polymer calculations. Orimoto et al. 566 applied the ELG/PM3 level to 

optimize structures of polysilane derivatives, poly[bis(4-propoxybutyl)silylene]. 

 The ELG method was used extensively to calculate polarizabilities and hyperpolarizabilities of important 

nonlinear optics materials. These two properties were studied using ELG by a number of researchers. Ohnishi et 

al. 567 computed donor/acceptor substituted polydiacetylenes at the RHF/6-31G level. Yu et al. using RHF/6-

31G calculated polyimides568 and [Li+[calix[4]pyrrole]Li–]n, up to 15 units.569 Pomogaeva et al. 570 at the RHF/6-

311G level with ECP/VDZ for chalcogen atoms (S, Se and Te) studied series of benzo-2,1,3-chalcogendiasoles 

ribbon oligomers (up to 15 units). At the unrestricted PM3 level, Orimoto et al. 571 calculated a pyrrole-based 

spin-polarized molecular wire containing 1-pyrrolylphenyl nitronyl nitroxide with oligothiophene units under 

the influence of an applied electric field. Yan et al. 572 computed meso-mesolinked metalloporphyrin oligomers 

up to 22 units at RHF/6-31G (ECP/VDZ for metals Mg, Zn and Ni).  

 Pomogaev et al. using ELG at the CIS/INDO level computed absorption spectra for aromatic molecules 

(benzene, anthracene, 4-dicyanomethylene-4H-pyran, tryptophan and estradiol) bound to polyethylene573 and 

explicitly solvated estradiol and tryptophan. 
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5. Conclusions 

 During several decades, fragment-based methods have come a long way from the initial stage of method 

development to large scale applications, which span many types of systems: molecular clusters, proteins, DNA, 

oligosaccharides, zeolites, quantum dots, nanowires and others. Despite the very considerable progress, they 

remain underused; there may be several reasons for this. Some of the software developments are only locally 

implemented, making it difficult for most interested users to utilize the methods. Many, perhaps most methods 

are specific to one specific program; users who are unfamiliar with that program may have an inertial barrier to 

using it. Second, many applications so far have been performed in what should be considered demonstrative 

fashion, with low level wave functions and basis sets. Third, in some cases the applications are not conducted 

with properly considering all necessary effects and factors; the most conspicuous example is the need to 

incorporate solvent effects and entropy in biochemical applications.  

 Nevertheless, fragment-based methods also offer many advantages. One is the efficiency and the ability to 

compute realistic systems. Another is the additional information which they can deliver, such as the intrinsic 

details of the physical picture of the interactions in the system. As shown above, the application field is very 

broad encompassing most systems of finite size, which chemists and physicists are interested in. We expect that 

in near future with the revolutionary progress in the computer technology and the advent of multicore CPUs and 

GPUs, increasing level of calculations and the ease of their performance, the fragment-based methods will grow 

more popular in computational community.  
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Figure. 1. Classification of fragment-based methods. Singly underlined approaches include constant embedding 

potentials, while doubly underlined approaches include some form of self-consistent fragment embedding 

potential (SCC), other approaches have no embedding potential. 
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Figure. 2. General outline of a standard FMO calculation including up to dimer interactions. 
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Figure. 3. Schematic representation of FMO/FD and FMO/FDD. Fragments are divided into three domains, 

frozen (grey), polarizable (blue) and active (red). All three domains are computed with QM (using multilayer 

FMO). An actual geometry optimization of the partially solvated prostaglandin H(2) synthase-1 in complex 

with the reversible competitive inhibitor ibuprofen (PDB: 1EQG) is shown at the lower part [this Figure is 

reproduced from the TOC graphic of J. Phys. Chem. Lett. 2011, 2, 282-288]. 
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Figure. 4. Example of a typical MFCC fractionation scheme.  The parent system is divided at the peptide bond 

into two fragments that are then capped.  The caps are then combined into a single concap to be subtracted from 

the sum of fragment contributions. 
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Figure. 5. Depiction of a fragmentation scheme created by the GEBF method containing primitive subsystems 

derived from each central fragment.  Solid lines depict covalent bonds while dashed lines represent hydrogen 

bonds. All possible subsystems are shown, including those that would be removed (i.e. 1234) due to double 

counting. 
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Figure. 6. Subsystem of OMTKY3 (protein turkey ovomucoid third domain) used to obtain� the buffer region 

(bold) used for (b) ab initio/buffer/EFP regions� (red/blue/green) used for the computation of the pKa of 

Lys55. (This Figure is reproduced from Jensen, J.H.; Li, H.; Robertson, A.D.; Molina, P.A. J. Phys. Chem. A, 

2005, 109, 6634-6643.) 
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Figure. 7. Fragmentation of the complex of phenol and faujasite zeolite, computed with FMO.231 The phenol 

molecule is shown in dark green, and the active catalytic site containing three aluminum atoms and three acidic 

hydrogens is shown in yellow. 
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Scheme I. Comparison of the Effective fragment molecular orbital method (EFMO) with EFP and FMO.  

Scheme I.  
Differences between EFMO and EFP Differences between EFMO and FMO 

1. The monomer energies are explicitly included in EFMO 
to give an estimate of the total energy of the system and 
allow internal geometries of the fragments to change. 

2. In EFMO, short-range interactions between the 
fragments are computed ab initio rather than with EFP 
expression:  

EEFP = ECoul + E pol + Edisp + Eexrep + Ect   

3. In EFMO, long-range interactions are modeled by 
electrostatic Coulomb and polarization terms only; 
dispersion, exchange-repulsion and charge-transfer are 
considered to be negligible at large separations. 

1.   In EFMO, monomer calculations are 
performed in the absence of external field and 
done once.  

2.   In EFMO, all long-range and many-body 
interactions are included through classical 
Coulomb and polarization terms.  

 

 



www.manaraa.com

 121 

Chapter 3. The Fragment Molecular Orbital and Systematic Molecular Fragmentation Methods Applied 

to Water Clusters 

A paper published in The Journal of Physical Chemistry and Chemical Physics 

Spencer R. Pruitt, Matthew A. Addicoat, Michael A. Collins, and Mark S. Gordon  

Abstract 

Two electronic structure methods, the fragment molecular orbital (FMO) and systematic molecular 

fragmentation (SMF) methods, that are based on fragmenting a large molecular system into smaller, more 

computationally tractable components (fragments), are presented and copared with fully ab initio results for the 

predicted binding energies of water clusters. It is demonstrated that, even when explicit three-body effects are 

included (especially necessary for water clusters due to their complex hydrogen-bonded networks) both 

methods present viable, computationally efficient alternatives to fully ab initio quantum chemistry.    

1. Introduction 

 Understanding the dynamics of molecules and ions in water has been a major aim of theoretical chemistry 

in order to fully describe how reactions take place in aqueous solution. Water is the most important solvent 

existing. The structure and function of all biological molecules rely on solvation by water. The local structure 

and role of water molecules around active sites in enzymes are essential components of substrate binding. The 

activation energy of all aqueous chemical processes that involve some charge rearrangement depends on both 

the static and dynamic polarization of the nearby water molecules. All of these chemical and biological 

processes depend on the "delicate molecular inter-linking" (hydrogen bonding) of water molecules.1 

 This unusual interlinking of water molecules presents substantial difficulties for accurate modelling of 

bulk water or large water clusters. The energetics of small water clusters can be treated ab initio using high 

levels of electronic structure theory such as coupled cluster theory with large basis sets. 2 High level methods 

have also been employed to model larger clusters.3 However, the computational time for these very high level 

methods scale as the seventh power of the number of water molecules. In order to model bulk water with 

sufficient accuracy, it is useful to establish the accuracy of more computationally feasible methods that scale 

much more slowly with the number of water molecules considered. 

 The task of estimating the electronic energy of large systems at low computational cost has been the 

subject of much study, using multi-layer quantum mechanics (QM)/molecular mechanics (MM) methods,4-6 

electrostatic embedding methods,7 and the effective fragment potential (EFP) method8, 9 [see Ref. 10, and 

references therein]. A number of groups 10-27 have reported successful methods for estimating the ab initio 

electronic energy (and other properties) of large molecules by breaking the molecule into fragments. Here, two 

of these approaches are considered which provide systematic hierarchies for estimating the energies of 
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molecules or clusters, the fragment molecular orbital (FMO) method and the systematic molecular 

fragmentation (SMF) method.  

 The FMO method was recently applied to the calculation of the energy of some clusters of 32 water 

molecules.10 In the present paper, a range of water clusters (16, 20, 32 and 64 water molecules) is studied using 

both the FMO and SMF methods. This allows a comprehensive comparison of the accuracy of the two methods 

for the binding energy of water clusters. The sizes of the clusters, the sizes of the basis sets employed, and the 

use of second order Møller-Plesset perturbation theory (MP2) 28 is determined by the necessity to calculate the 

"exact" total energy of the clusters for comparison with the FMO and SMF estimates. Since the MP2 level of 

theory gives at least a semi-quantitatively reasonable description of the interaction of water molecules, it 

provides a useful "test-bed" to determine if the FMO and SMF methods are robust methods for estimating the 

energetics of large clusters of water molecules.29 

 The paper is arranged as follows: Section 2 describes new modifications to the SMF method to account for 

the charge distribution in the whole water cluster, and includes a brief description of the FMO method. Section 

3 presents and discusses the results of tests of the accuracy of the FMO and SMF methods for the binding 

energies and relative energies of water molecules in clusters of 16, 20, 32 and 64 water molecules. Discussion 

and concluding remarks are contained in the final section. 

2. Methodology 

2.1 Systematic molecular fragmentation 

 The systematic molecular fragmentation (SMF) method decomposes the whole molecule into small 

molecular fragments by breaking single bonds between functional groups, according to an established 

algorithm.22-24 Recently a simple variation on this approach, called systematic molecular fragmentation by 

annihilation (SMFA), has been reported 30 which is better suited for the estimation of cluster energies.  

 In order to treat water clusters as a molecule, each water monomer is defined as a functional group. In this 

application of the SMFA method to molecular clusters, a simple ansatz is adopted for bonding: A bond exists 

between two water molecules if the shortest atom-atom distance between the molecules is less than 2.3 Å 

(significantly larger than a typical intermolecular hydrogen bond length of about 1.8 Å). For any given cluster 

geometry, single bonds are assigned according to this criterion. The cluster is then fragmented, using the SMFA 

algorithm, except that hydrogen atom "caps"22, 23 on broken bonds are not required. This fragmentation is 

represented by 

Cluster→ fn
n=1

N frag

∑ Fn ,                  (1) 
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where the {Fn} are small sub-clusters of water molecules, and the {fn} are integer coefficients. The SMFA 

method is hierarchical, meaning that there are a series of approximations denoted as Level 1, Level 2, and so on, 

in which the water sub-clusters increase in size. In simple terms, at Level n any two water molecules separated 

by up to n bonds will occupy at least one sub-cluster in common, whereas pairs of molecules separated by n+1 

bonds (or more) will not both be found in any sub-cluster.  

The "bonding energy" of the whole cluster is given by 

Eb = fn
n=1

N frag

∑ E(Fn ) ,                   (2) 

where E(Fn) denotes the electronic energy of fragment Fn. For a Level 1 fragmentation, Eqs (1) and (2) give a 

simple description of the cluster and cluster energy in terms of water dimers (for those dimers in which the 

shortest atom-atom distance between the molecules is less than 2.3 Å). For higher levels of fragmentation, the 

energy is given in terms of larger sub-clusters of water molecules. For Level 2, the largest sub-clusters would 

generally contain five water molecules; one central molecule linked by hydrogen bonds to four nearby 

molecules. Level 3 sub-clusters often contain as many as nine water molecules. 

 Eq,(2) neglects the energy, Enb, due to longer range (i.e., longer than bonded interactions) non-bonded 

interactions between water molecules. In previous applications of the SMF method, this longer range interaction 

has been included in terms of Coulomb, induction and dispersion energies 

E = Eb + Enb ,                      (3) 

where  

Enb = Eele + Eind + Edisp                   (4) 

Because a water molecule has a significant dipole moment, it is expected that the Coulomb and induction 

interactions will be relatively significant in large water clusters. Due to these significant contributions, the 

Coulomb and induction interactions are included by "embedding" 7, 26 the fragments, Fn, in the charge 

distribution associated with all other molecules in the cluster not contained in Fn. Each water molecule in the 

cluster has an associated charge distribution. The electronic energy of each fragment is evaluated in the 

presence of the charge distributions for all water molecules that are not in that fragment. The energy of 

fragment Fn in the presence of the charge distribution associated with all other groups,[i], is written as

E Fn;i ∉Fn[ ] . This energy replaces E(Fn )  in Eq. (2). It has previously been noted by Li et. al26 that setting 
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E = fn
n=1

N frag

∑ E Fn;i ∉Fn[ ] ,                 (5) 

evaluates the Coulomb interaction of non-bonded groups twice, and must be corrected. 

The total energy that accounts for both bonded and non-bonded interactions is then given by 

E = fn
n=1

N frag

∑ E Fn;i ∉Fn[ ]− 1
2

Eele
j=1
j ,i∉{Fk }

Ngroups

∑
i=1

Ngroups

∑ (i, j)+ Edisp ,           (6) 

where the number of groups (water monomers) is denoted by Ngroups. In Eq. (6), Eele(i, j) denotes the classical 

Coulomb interaction of the charge distributions associated with groups i and j. Note that by embedding each 

fragment in all other charges, the many-body nature of the induction energy is accounted for and is included in 

the ab initio calculation of the fragment energies. The double summation in Eq. (6) includes all pairs of groups 

that are never both contained in any fragment. The dispersion energy is approximated here by a pair-wise 

dispersion interaction between groups that are never both contained in any fragment: 

Edisp = Edisp
j>i
j ,i∉{Fk }

Ngroups

∑
i=1

Ngroups

∑ (i, j).                  (7) 

This pair-wise dispersion energy, Edisp (i, j) , is evaluated as previously described,24 using the anisotropic static 

polarizability and the imaginary-frequency-dependent polarizability of each group evaluated at the same level 

of ab initio theory used to evaluate the E Fn;i ∉Fn[ ] . 

Charge distributions 

 The question arises as to what charge distribution is associated with each water molecule. The set of 

charges associated with each water molecule,{q(i)}, is evaluated self-consistently as follows. In the first 

iteration, an ab initio calculation at the given level of theory is carried out for each water molecule. The 

calculated electron density is analysed as a multipole expansion centered on each atom, using the Stone 

distributed multipole analysis (DMA) method.31 This expansion includes a charge, dipole and quadrupole on 

each atom. In the next iteration, the calculation of the electronic wavefunction for each water molecule is 

repeated, but now embedded in the presence of the charges (but not the higher order multipoles) on all other 

atoms, as evaluated in the previous iteration. The newly calculated electron density is analysed using the DMA 

method to give updated values for the multipole moments centered on each atom (including the charges). This 

process is iterated to self-consistency, however it has been found that only one iteration is required. This 
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process provides charges, dipoles and quadrupoles centered on each atom that reflect the polarization of the 

charge density on each water molecule by all other water molecules. In some ab initio program packages that do 

not have full multipole capability (e.g., Gaussian03), these multipole moments must be represented as closely 

spaced groups of charges. Table S1 in the supplementary material presents expressions for the locations and 

magnitudes of the charges in the vicinity of each atom, which represent the charge, dipole and quadrupole for 

each atom.  

 Bonding between water monomers has been defined in terms of a specific "cut-off" distance criterion 

described above. Such a definition must produce a discontinuity in the total energy at configurations where the 

distance between two monomers exactly equals this cut-off distance. A switching function that smoothly 

exchanges the bonded fragment energy for the corresponding non-bonded calculation might be used to 

overcome this problem. This task will be the focus of future work. 

2.2 The Fragment Molecular Orbital (FMO) method 

The FMO method 32 treats electron exchange and charge transfer as largely local phenomena.  By 

making this approximation, a chemical system may be broken into many smaller, localized pieces, treating long 

range effects of the full system using only a Coulomb operator. Large reductions in computational cost required 

for calculations can be achieved using this approximation, allowing for calculations on much larger systems 

than would be possible using fully ab initio methods.  As a means to further reduce the computational cost, the 

FMO method employs multi-level parallelization through the use of the Generalized Distributed Data Interface 

(GDDI). 33 This combination of theoretical approximations and efficient computational algorithms has allowed 

the FMO method to perform all electron calculations on over 20,000 atoms.34 

 Fragments are created by breaking bonds electrostatically,35, 36 with the user choosing the most appropriate 

fragmentation scheme using their chemical intuition.  Broken bonds are divided heterolytically, with two 

electrons assigned to one fragment and no electrons assigned to the other.  To avoid the charged fragments that 

would be created by stopping here, a proton from the electron deficient fragment is reassigned to the electron 

rich fragment.  This is analogous to the localized charge distribution method.37, 38 This procedure creates two 

neutral fragments, both of which carry sp3 hybridized orbitals at the broken bond.  Once all of the fragments are 

created, individual (monomer) calculations are performed for each fragment in the Coulomb “bath” of the full 

system, representing the electrostatic potential (ESP) of the remaining N-1 fragments (N = total number of 

fragments in the system).  This first FMO level, called FMO1, may be improved upon by including explicit 

two-body (dimer) and three-body (trimer) calculations. 39, 40 All of the many-body interactions are obtained 

through fully quantum calculations, including all relevant short range interactions (electron exchange, electron 

correlation and charge transfer), and are performed in the rigorous ESP of the full system.   

 The following outline is followed during any given FMO calculation: 
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1. The initial electron density distribution is calculated for each monomer in the Coulomb bath of the rest 

of the system 

2. The monomer Fock operators are then constructed using these densities and the energy of each 

monomer is calculated 

3. Each of the monomer energies is iterated to self-consistency, leading to a converged ESP.  This step is 

commonly called the “Monomer SCF” 

4. If one chooses to use the FMO2 level, fragment dimer calculations are then performed in the 

converged ESP of the rest of the system.   Each dimer calculation is only performed once (not iterated 

to self-consistency). 

5. If one chooses to use the FMO3 level, fragment trimer calculations are performed next in the 

converged ESP of the rest of the system.  Each trimer calculation is only performed once (not iterated 

to self-consistency). 

The total energy of the system within the FMO approximation can be written as: 

E = EI +
I

N

∑ (EIJ −
I>J

N

∑ EI − EJ )          

+ {(EIJK −
I >J>K

N

∑ EI − EJ − EK )                (8) 

−(EIJ − EI − EJ ) − (EJK − EJ − EK )− (EKI − EK − EI )}   

with monomer (I), dimer (IJ) and trimer (IJK) energies all obtained through the standard SCF method.  The 

inclusion of higher order interactions has recently been reported40.  The Fock equation used to calculate each of 

the energies in Eq. (8) is modified from the standard form by adding terms to the one electron Hamiltonian that 

represent the ESP: 

 F
xCx = SxCx ε x   x = I , IJ, IJK                   (9) 

 Fx = Hx + Gx                  (10) 

 
Hµν

x = Hµν
x +Vµν

x + B µ ϕi
h

i
∑ ϕi

h ν             (11) 

Proper division of basis functions across broken bonds is achieved by adding a projection operator, 

B µ ϕ i
h

i
∑ ϕ i

h ν , to the Hamiltonian, where the superscript h indicates a hybrid orbital as mentioned 

above.  The constant B is chosen to be sufficiently large so as to remove any corresponding orbitals out of the 
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variational space (B=106 a.u.).  The last term in Eq. (11) is not used if no covalent bonds are broken. This 

occurs, for example, if the fragmentation occurs between molecules in a liquid. 

The exact form of the ESP, Vµν
x , is: 

Vµν
x = (

K (≠x )
∑ µµν

K +ν µν
K )                 (12) 

µµν
K = µ (−ZA / | r − rA |)

A∈K
∑ ν               (13) 

ν µν
K = Dλσ

K

λσ∈K
∑ (µν | λσ )                (14) 

The first term in Eq. (12) µµν
K  represents the electron-nuclear attraction contribution to the total energy and the 

second term ν µν
K  represents the two-electron contribution, both expressed in terms of AOs µ and ν. Both terms 

are calculated in the presence of the surrounding monomers K with electron density DK.  

 Savings in computational cost can be achieved through the use of approximations to the two-electron term 

in the ESP, Eq. (14).  A user-defined cut-off value RESPPC is created, defined as the interfragment distance 

between two fragments I and J, outside of which the two-electron terms are treated with more approximate 

methods. This approximation is applied by comparing RESPPC with the relative minimum distance between 

fragments RIJ, 

RIJ = min
A∈I ,B∈J

RA − RB

WA + WB

#
$
%

&
'
(

               (15) 

where indices A and B run over atoms in fragments I and J respectively, and WA and WB are the corresponding 

van der Waals radii.41 Due to the cancellation of units (Å) in Eq. (15), all of the user-defined and calculated 

values are unitless.  Analogous cut-off values, RESDIM and RCORSD, can also be defined by the user to 

approximate the SCF procedure using a Coulomb interaction and neglect the inclusion of electron correlation 

during dimer calculations when using methods such as MP2 and coupled cluster theory (e.g., CCSD(T)) 

respectively.  In addition to these cut-off values, an array of four values, RITRIM, can be specified to completely 

neglect the inclusion of separated trimer interactions. 
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Two types of approximations to the ESP are employed using the cut-off values based on Eq. (15).  The 

first approximation, applied at intermediate distances, is the Mulliken atomic orbital population approximation 

to the two electron integrals. 42, 43 Eq. (14) can be rewritten as  

ν µν
K ≅ (DK SK )λλ

λ∈K
∑ (µν | λλ)               (16) 

This approximation can effectively reduce the computational cost of calculating the two-electron integrals by a 

factor of the number of basis functions (NB). 

 The second type of approximation, called the point charge approximation, is applied at long distances and 

further simplifies Eq. (15) as 

ν µν
K ≅ µ

QA

r − rA

$

%&
'

()A∈K
∑ ν                (17) 

where QA are fractional atomic charges derived from the Mulliken atomic populations of the monomers. This 

approximation further reduces the computational cost of calculating the two-electron integrals by another factor 

of NB. 

 Further refinements to the formalism have been performed to increase the accuracy of the method,44 as 

well as the addition of a long list of functionality.14, 45-54  Detailed descriptions of the FMO method formalism 

can be found in a number of review articles and books.10, 55, 56 57 

3. Results 

 A sample of water cluster configurations was obtained using the EFP1 58 implementation of the Monte 

Carlo algorithm with simulated annealing (MC/SA)59, 60. Minimum energy structures of 16 and 20 waters, were 

chosen from previous work60, while isomers of 32 and 64 water molecules were obtained using the MC/SA 

approach.  The starting temperature for the SA was set at 20,000 K and lowered to 300 K.  Local minimizations 

were performed every 100 steps; the number of molecules moved per step was varied from one to four.  Of the 

~16,000 geometries sampled for both 32 waters and 64 waters, several unique isomers were chosen for each and 

re-optimized using the EFP1 method58.  It should be noted that all optimizations using the EFP method use the 

same frozen internal geometry for each water molecule.  The final sample consists of seven clusters each of 16, 

20 and 64 water molecules and eight clusters of 32 water molecules.   

 The total electronic energy of the 16, 20 and 32 clusters was calculated at the MP2 level of theory using 

the 6-31G(d), 6-31++G(d,p) and 6-311++G(3df,2p) Pople-type basis sets. 61-63 The total electronic energy of the 

64 water clusters was evaluated with the first two basis sets only. Calculations of these total energies, as well as 
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all FMO calculations, were carried out using the General Atomic and Molecular Electronic Structure System 

(GAMESS) program package.35, 36 All of the SMFA energies were evaluated by MAC and MAA using the 

GAUSSIAN03 program package.64 SRP and MSG did not use, nor would they consider using, the 

aforementioned program package. 

 Since each water monomer has the same internal geometry in every cluster, the total binding energy of 

each cluster was easily evaluated by subtracting the gas phase monomer energy (multiplied by the appropriate 

number of monomers) from the total energy. To allow direct comparison between different sized clusters, the 

binding energy per water molecule is reported. The total energies for all clusters for MP2 calculations compared 

to the FMO and SMFA estimates are presented in the supplementary material Table S2.   

3.1 Approximations 

 The SMFA energies are obtained by embedding the fragments in a background charge distribution. Table 

1 presents examples of the accuracy of the SMFA estimate of the cluster binding energy when no background 

charges are used, or when the multipole expansion of the charge distribution is truncated at various orders. In 

the table, "two body only" denotes a Level 1 fragmentation into hydrogen bonded pairs of water molecules with 

no account of non-bonded Coulomb, induction or dispersion effects. Results for "no field" include non-bonded 

dispersion but no Coulomb or induction effects. The remaining results include background charge distributions 

that mimic atom centered multipoles up to second order. Table 1 indicates that inclusion of dipole and 

quadrupole moments is necessary to achieve reliable estimates of the cluster binding energy. In the results 

presented below, the background charge distribution follows the findings from Table 1 and is represented by 

charges (see Table S1) that mimic the atom centered distributed charges, dipole and quadrupole moments. 

 The FMO method employs two approximations to reduce the total number of explicit dimer and trimer 

calculations performed.  Table 2 shows the total number of n-mer calculations to be performed for one isomer 

of 16, 20, 32 and 64 water molecules.  The total number of trimer calculations to be performed increases rapidly, 

nearly an order of magnitude, on increasing the cluster size from 32 to 64 water molecules.  Many of these n-

mer interactions occur between far separated water molecules and can be approximated using one-electron 

Coulomb potentials, or neglected completely, by specifying the cut-off values RESDIM and RITRIM for dimer and 

trimer interactions, respectively.  The keyword RITRIM is an array of four values.  The first three of these array 

elements are used to determine whether a trimer SCF calculation is performed, while the fourth element 

specifies the cut-off value for the calculation of correlation contributions for trimers.  The omission of electron 

correlation for far separated dimers is specified with the cut-off value RCORSD.  Approximations to the two-

electron term in the ESP are defined using the cut-off value RESPPC.  For this work only the point charge 

approximation to the ESP was used.  Due to the local nature of electron correlation, a great number of MP2 

calculations can also be neglected. Table 3 shows the reduction in dimer and trimer calculations, with 
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approximated interactions labelled as “separated” and the total number of explicit HF and MP2 calculations 

performed labelled as “SCF” and “correlated” respectively.   

 It becomes apparent that for small clusters of fewer than 20 water molecules, the total number of n-mer 

calculations is not significantly reduced, even for the most aggressive cut-off approximation used.  Figure 1 

shows the average error by cut-off value employed for all three basis sets and all cluster sizes.  It can be seen 

that reducing the number of n-mer calculations for these small clusters has little effect on the accuracy of the 

calculation for FMO2 and FMO3.  Indeed, the level of error remains relatively low and unchanged for all three 

basis sets for these small clusters.  The error begins to increase with the 32- and 64-water clusters, particularly 

for FMO2 where the average error for these cluster sizes jumps to over 10 kcal/mol.  However, even though all 

dimer calculations are retained for the clusters of 32 water molecules, and nearly all dimer calculations are 

retained for the 64-water clusters, the level of error does not decrease significantly.  This lack of error reduction 

implies that the error incurred from using the FMO method for these calculations is not due to a reduction in the 

number of dimer calculations that are included for large clusters.  

 The inclusion of trimer interactions via FMO3 provides a substantial reduction in the average error, shown 

in Figure 1d-f.  As was the case for the FMO2 approximations being used for clusters of 20 waters or less, the 

inclusion of all three-body interactions has little effect on the average error.  An improvement in the average 

error can be seen in Figure 1e for the clusters of 32 water molecules, but more dramatically in the average error 

of the 64 water clusters.  

 For consistency and to achieve the most accurate energies for the largest water clusters, all results shown 

hereinafter employ the most relaxed level of approximation (A3), with the fewest number of excluded 

calculations. This corresponds to an average reduction of approximately 200 correlated dimer and 2000 

correlated trimer calculations for the clusters of 64 water molecules.  For calculations with fewer than 32 water 

molecules, however, the authors recommend values of RESDIM=3.5 and RCORSD=3 for FMO2 calculations and 

RITRIM=3,-1,3.5,3 for FMO3 calculations, using the same RESDIM and RCORSD values as FMO2.  Due to the 

importance of many-body interactions in water clusters, any clusters of 64 water molecules or larger necessitate 

the inclusion of as many dimer and trimer interactions as possible. 

3.2 Binding Energy per Molecule 

 As a first criterion for comparison between the FMO and SMFA methods with fully ab initio results, the 

binding energy per molecule was calculated for all clusters and basis sets for both methods and compared to ab 

initio results.  The mean absolute errors in the binding energies for all clusters and basis sets are shown in Table 

4.  Average errors for each size cluster are shown in Tables 5 and 6 for the FMO method and the SMFA method, 

respectively.  The binding energies per molecule for both the FMO and SMFA methods are also plotted in 
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Figures 2-6.  This data is characterized by distinct groups resulting from the substantial reduction in the 

magnitude of the binding energy with increasing basis set size. 

 For both methods, the error in average binding energy per water molecule for all clusters and basis sets 

falls between 0.4% and 4.3%, as shown in Table 4.  While the errors for individual clusters are dependent on 

both the particular cluster size and the basis set chosen, Table 4 indicates that as a whole the average errors for 

FMO2 and SMFA Level 1 are comparable, with errors around 4.3%.  Similar conclusions can be made for the 

agreement of FMO3 and SMFA Level 3 with errors between 0.4 and 0.5%.  SMFA Level 2 appears to fall 

somewhere between FMO2 and FMO3 and between SMFA Levels 1 and 3, giving errors of approximately 

1.3%.  While errors of 4.3% are perhaps too large to be useful, the errors for FMO3 and SMFA Level 3 are very 

small and within chemical accuracy.  Based upon the data in Table 4, SMFA Level 2 appears to be a reasonable 

compromise approach, providing an acceptable level of error.  It is also apparent that the level of error incurred 

by including only pair interactions is unreliable. Water clusters require at a minimum some level of higher order 

many-body interactions in order to provide reliable binding energies. 

 The results for FMO2 (Figure 2) show a trend of increasing error in the binding energy compared to ab 

initio results as the size of the basis set increases. While there is an increase in the magnitude of the errors, the 

size of the error between different isomers of each cluster size corresponding to a given basis set is very 

consistent.  This is illustrated by the relatively close grouping of each cluster of dots in Figure 2. SMFA Level 1 

errors (Figure 4) appear to be much more random, with the errors also growing worse with an increase in basis 

set size.  The consistent level of error in predicted FMO2 binding energies versus the random errors in SMFA 

Level 1 manifests in the ability of FMO2 to provide a better estimate of the relative energies of different cluster 

isomers than can be achieved with SFMA Level 1.  However, both FMO2 and SMFA Level 1 reproduce the 

fully ab initio average binding energy per molecule to within 0.5 kcal/mol.   

 Further comparisons between FMO2 and SMFA Level 1 are shown in Tables 5 and 6.  Table 5 shows the 

average FMO errors in the binding energy per water molecule as a function of basis set and cluster size, while 

Table 6 contains the corresponding SMFA results.   Table 5 illustrates a slight increase in the FMO2 error as the 

cluster size increases. This effect becomes more pronounced with the larger basis sets.  In contrast, SMFA 

Level 1 does not exhibit a consistent increase in error with either cluster size or basis set size. Compared to 

FMO2, the SMFA Level 1 errors are not nearly as consistent between cluster size and isomers, and are therefore 

more difficult to interpret.  In general it can be said that, in addition to the inability of the pair interactions to 

properly describe water clusters, an increase in basis set size with the FMO2 method appears to place even more 

significance on the higher order many body interactions that are not explicitly included in FMO2.  For the 

SMFA Level 1 method, there is also a trend of increasing error with increasing cluster size, especially for the 

largest basis set.  This trend leads to the same conclusions about the importance of higher order many body 

interactions with increasing cluster size.  
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FMO3 and SMFA Levels 2 and 3 contain higher order many body interactions.  Figure 3 shows the 

FMO3 errors in binding energy per molecule.  It is readily apparent that the use of FMO3 nearly eliminates the 

error incurred through the use of only pair interactions.  As is the case for FMO2, FMO3 also provides 

extremely consistent errors for all clusters and basis sets.  The binding energy is underestimated slightly when 

using the small 6-31G(d) basis set, however the errors are still quite small.  SMFA Level 2 results, shown in 

Figure 5, also suffer from some of the random errors found for SMFA Level 1, but to a much smaller degree.  

The accuracy of SMFA Level 2, on average, is reasonable, as illustrated by the lack of any exceptionally large 

errors (see Figure 5).  For SMFA Level 3 (Figure 6) the predicted binding energies/water molecule appear to be 

very close to those predicted by FMO3, including the consistent nature of the errors.  

3.3 Relative Energies 

 A more important metric to gauge the quality of results provided by either the FMO or the SMFA method 

is how accurately the relative energies of the different cluster isomers are reproduced.  Figures 7 and 8 show the 

FMO and SMFA relative energies, respectively, for all cluster sizes and basis sets.  Each figure consists of 

eleven graphs, a through k, with the first four showing results for the 6-31G(d) basis set, the next four showing 

results for the 6-31++G(d,p) basis set and the last three showing results for the 6-311++G(3df,2p) basis set.  

Each set of graphs displays the results in order of increasing cluster size for 16, 20, 32 and 64 water molecules, 

with the exception of the graphs for the 6-311++G(3df,2p) basis set which only shows results for 16, 20 and 32 

water molecules.  In some instances, the errors for FMO2 and SMFA Level 1 are very large, requiring the use 

of two different ordinate axes displaying the FMO2 or SMFA Level 1 energies on the right ordinate while 

displaying the ab initio, FMO3 and SMFA Levels 2 and 3 energies on the left ordinate.  All energies are in 

kcal/mol and all cluster geometries are shown in Figures S1 through S4. 

 The results for the FMO method in Figure 7 provide additional evidence that the use of only pair 

interactions, while insufficient for absolute energies, reproduces the relative energies for all cluster sizes and 

basis sets with remarkable accuracy.  In all cases the FMO2 relative energies closely mirror the relative energies 

of the ab initio calculations, with only a few discrepancies appearing for the 6-31++G(d,p) basis set for the 64-

water clusters and the 6-311++G(3df,2p) basis set for 16 and 20 water molecules.  As expected, the addition of 

three body interactions dramatically improves the overall accuracy when compared to ab initio energies.  In 

agreement with previous conclusions based on the binding energy per molecule, the absolute errors for FMO3 

decrease with an increase in the size of the basis set, but the errors increase slightly with an increase in cluster 

size.  These errors in the absolute energies have little effect on the relative energies other than a corresponding 

shift along the ordinate, with FMO3 closely mirroring the ab initio curve in nearly all cases.  There are, 

however, a few notable discrepancies, with increases in error for certain isomers of 16 and 20 water molecules 

for the 6-31++G(d,p) and 6-311++G(3df,2p) basis sets.   These discrepancies can be attributed to unique, highly 

symmetric structural arrangements of the smaller clusters that exhibit unusually large electron delocalization. 

Such species are not present in the larger, more globular clusters of 32 and 64 water molecules.   
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 Figure 8 follows the same layout conventions as Figure 7, with certain graphs containing two ordinate 

axes in order to better illustrate the relative energetics compared to ab initio.  In contrast to the FMO method, 

the use of only pair interactions in SMFA Level 1 fails to reproduce accurate relative energies in most cases.  

Increasing to SMFA Level 2 provides a marked improvement, particularly for smaller clusters and basis sets.  

However, as the basis set is increased the agreement begins to decline. This is particularly true for the energy of 

the 16-water s43 isomer.  In most other cases, however, the agreement is adequate.  Further increasing the 

accuracy to SMFA Level 3 eliminates all spurious errors such as those found for the s43 isomer.  Agreement 

with ab initio results for SMFA Level 3 is good, and in some cases better than the relative energies produced by 

FMO3. 

Further investigation of the improvement in agreement upon going from SMFA Level 2 to Level 3 can 

be found in the supplementary information (Table S3).  There it is shown that the contribution of non-bonded 

dispersion is more significant for the larger, 32- and 64-water clusters. For SMFA at Level 2, the non-bonded 

dispersion lowers the binding energy per molecule by about 0.3 kcal/mol. This contribution falls to about 0.07 

kcal/mol, at Level 3. It appears, therefore, that the dominant non-bonded dispersion interactions are between 

those molecules that are not connected in sub-clusters at Level 2, but are so connected at Level 3. The results 

for SMFA Levels 2 and 3 are consistent with those obtained using a different fragmentation scheme by Li and 

co-workers.26 Although that work did not include non-bonded dispersion effects, the sub-clusters considered are 

comparable in size to those for Level 3, so that the total contribution of long range dispersion is not large. 

3.4 Timings 

One of the advantages of the SMFA approach is the ease of trivial parallelism, achieved by calculating 

each non-interacting fragment on a separate CPU. It is illustrative to consider the number and size of fragments 

produced by fragmentation. Tables 7 and 8 show the distribution of fragment sizes for each SMFA Level 2 and 

SMFA Level 3 cluster, respectively. The total number of fragments produced by the SMFA method is shown in 

the final column. For SMFA Level 2, the total number of fragments is approximately constant up to a cluster 

size of 32. Doubling the size of the cluster from 32 to 64 water molecules increases the number of fragments 

from 125 to 356, roughly a factor of three. It is important to note, however, that the majority of the increase is 

from the smallest fragments. For example, while the number of 4-water fragments doubles, the number of 2- 

and 3-water fragments approximately triples, and the number of the latter is greater to begin with.  

 The FMO method has similar advantages when it comes to parallelism, including the ability to calculate 

individual fragments, as well as dimers and trimers independently of one another.  This allows for two levels of 

parallelism through the use of the GDDI in GAMESS.  FMO calculations that employ the GDDI assign 

individual fragment n-mer calculations to separate nodes or “groups”, with each group performing its assigned 

fragment calculation in parallel.  Timings for energy calculations at the MP2 level of theory using the 6-

31++G(d,p) basis set and clusters of up to 32 water molecules are shown in Table 9. The timing calculations 
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were performed on six nodes containing two quad-core 2.66 GHz Intel Xeon processors and 16 GB of RAM per 

node.  The FMO calculations used GDDI with one node per group for a total of 6 groups.   

 It is apparent that the wall time for the ab initio calculations increases by a factor of greater than 25 when 

doubling the system size from 16 to 32 water molecules.  In contrast to this quickly increasing wall time, the 

FMO2 calculations provide a time savings between 97 and 99% of the ab initio calculations with errors between 

2.65 and 9.30 kcal/mol.  In order to obtain reasonable errors, however, FMO3 must be used with the current 

fragmentation scheme.  The use of FMO3 reduces the errors to between 0.28 and 1.73 kcal/mol while still 

providing a time savings between 77 and 96% compared to the ab initio timings.  

4. Conclusions 

 It has been shown that the FMO and SMFA methods both accurately estimate the MP2 energies of water 

clusters. In contrast, the pair-wise interaction model provides a very poor estimate of binding in water clusters.  

On average the mean errors of the FMO methods are remarkably close to the corresponding mean errors for 

SMFA methods. However, the FMO method tends to give systematic, rather than random, deviations from the 

exact cluster energies. This means that if isomerization energies are important for the physical measurement of 

interest, then the FMO method would be more reliable than the SMFA method. 

 The computational effort required for the SMFA method increases nearly linearly with the cluster size, 

since the number of sub-clusters increases approximately linearly with the size of the whole cluster. Level 2 

fragmentation typically results in sub-clusters of five (and less) water monomers, while Level 3 typically results 

in sub-clusters of eight to nine (and less) water monomers. Moreover, Level 3 fragmentation typically produces 

a much greater number of fragments. Hence, Level 3 SMFA is significantly more computationally expensive 

than Level 2. Level 2 SMFA produces an average error of about 0.15 kcal/mol per water monomer (about 1.3% 

of the total), which would appear to be sufficiently accurate for many applications. It is important to note that 

non-bonded dispersion must be accounted for if Level 2 fragmentation is used. 

The computational effort for FMO also increases nearly linearly for FMO2, while the computational 

effort of FMO3 increases by a factor of  ~4.8.  This deviation from nearly linear scaling is due to the quickly 

increasing number of three body interactions that are required with increasing cluster size.  Despite this increase 

in three body calculations required, the time savings obtained from FMO3 when compared to ab initio 

calculations also increases with increasing system size (77 to 96% with a doubling of system size).  The 

accuracy of FMO2 is more comparable to the SMFA Level 1 method, with an average error of about 0.46 

kcal/mol per water monomer.  This level of error is clearly unacceptable for many applications, despite the 

accurate reproduction of the relative energies between water cluster isomers.  To produce an acceptable level of 

error FMO3 must be used, producing errors in agreement with SMFA Level 3 but significantly increasing the 

computational cost.  It is important point out that the accuracy of FMO2 can be increased for single point 
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energy calculations by placing more than one water molecule per fragment, however this type of fragmentation 

scheme can become problematic for optimizations and molecular dynamics (MD) simulations where individual 

water molecules may move apart.       

MD simulations in aqueous solution are at present primarily carried out using classical force fields. 

Simulations of water (and solutes in water) require a large number of evaluations of the energy and energy 

gradient of the whole simulation system. As noted here and elsewhere, the water monomer-monomer interaction 

fails to account for a large percentage of the water binding energy per molecule, and so does not provide the 

basis for a quantitatively accurate study of water dynamics, even though pair models are frequently used.65-67 

FMO and SMFA appear to provide a quantitative approach to the energetics of water dynamics; the challenging 

task is to incorporate these approaches into a computationally feasible algorithm for dynamical simulations. 
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Figure 1.  Average error according to basis set and cut-off values described in Table 3.  Approximation labels 

A1, A2, A3 correspond to the following cut-off values: (RESDIM/RCORSD) for FMO2 graphs a-c: A1 = 2.5/2 

A2 = 3.5/3 A3 = 4.5/4.  Cut-off values (RITRIM) corresponding to FMO3 graphs d-f: A1 = 2,-1,2.5,2 A2 = 3,-

1,3.5,3 A3 = 4,-1,4.5,4.  Two ordinate axes are used in cases of unusually high errors (graphs a and b) with the 

errors for clusters of 64 water molecules shown on the right ordinate. 
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Figure 2. The binding energy (per molecule) for each cluster and basis set using the FMO2 method is shown 

versus the corresponding "exact" value calculated for the whole cluster. The dotted line is merely a visual aid 

indicating exact agreement. 
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Figure 3. The corresponding data to Figure 2 for the FMO3 method. 
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Figure 4. The corresponding data to Figure 2 for the SMFA Level 1 method. 
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Figure 5. The corresponding data to Figure 2 for the SMFA Level 2 method. 
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Figure 6. The corresponding data to Figure 2 for the SMFA Level 3 method. 

 

 



www.manaraa.com

 

!

145 

Figure 7.  Comparison of relative energies between fully ab initio MP2, FMO2-MP2 and FMO3-MP2 

for all cluster sizes and basis sets.  Graphs a-d show relative energies for 16, 20, 32 and 64 water 

clusters respectively for the 6-31G(d) basis set.  Following the same trend in cluster size, graphs e-h 

correspond to the 6-31++G(d,p) basis set results and graphs i-k correspond to the results using the 6-

311++G(3df,2p) basis set.  In graphs c, d and g-k the FMO2 energy scale is shown on the right 

ordinate while the energy scale for ab initio and FMO3 results is shown on the left ordinate.  Isomers 

are represented on the abscissa of each graph and all energies are in kcal/mol. 
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Figure 7.  (continued) 
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Figure 8.  Comparison of relative energies between fully ab initio MP2 and SMFA Levels 1, 2 and 3 for 

all cluster sizes and basis sets.  Graphs a-d show relative energies for 16, 20, 32 and 64 water clusters 

respectively for the 6-31G(d) basis set.  Following the same trend in cluster size, graphs e-h correspond 

to the 6-31++G(d,p) basis set results and graphs i-k correspond to the results using the 6-

311++G(3df,2p) basis set.  In graphs a-f and i-k the SMF Level 1 energy scale is shown on the right 

ordinate while the energy scale for ab initio and SMF Level 2 and Level 3 results is shown on the left 

ordinate.  Isomers are represented on the abscissa of each graph and all energies are in kcal/mol.  
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Figure 8.  (continued) 
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Table 1. The average percentage error in the binding energy for clusters of 64 water molecules calculated at 

SMF Level 1. Results are given for the two-body interaction with fragmentation plus long range dispersion and 

long range electrostatic interactions (see text for details). 

Method MP2/6-31G(d) MP2/6-31++G(d,p) 
Two body only 14.3 46.1 

No Field 13.5 41.2 
Charges 6.0 21.1 

Charges + dipoles 6.1 5.4 
Charges + dipoles + 

quadrupoles 

6.4 1.5 
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Table 2.  Total number or dimers and trimers potentially evaluated without the use of approximations using 

FMO2 and FMO3, for examples of each cluster size. 

Cluster size Total number of n-mers 
 dimers trimers 

16 120 560 
20 190 1140 
32 496 4960 
64 2016 41664 
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Table 3.  Number of dimer and trimer calculations actually performed based on the FMO approximation cut-

offs (RESDIM, RCORSD for dimers and RITRIM for trimers). 

 n-mer calculations based on cut-off thresholds 
 dimers  trimers 
 RESDIM=2.5 RESDIM=3.5 RESDIM=4.5  RITRIM RITRIM RITRIM 
 RCORSD=2 RCORSD=3 RCORSD=4  2,-1,2.5,2 3,-1,3.5,3 4,-1,4.5,4 

W16        
separated 11 0 0  - - - 

SCF 109 120 120  541 560 560 
correlated 92 120 120  448 560 560 

        
W20        

separated 29 0 0  - - - 
SCF 161 190 190  1034 1140 1140 

correlated 127 187 190  776 1140 1140 
        

W32        
separated 128 7 0  - - - 

SCF 368 489 496  3705 4949 4960 
correlated 259 454 496  2369 4797 4960 

        
W64        

separated 1047 417 71  - - - 
SCF 969 1599 1945  14898 34377 41187 

correlated 599 1299 1827  7363 26797 39700 
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Table 4. Average errors in the binding energy per water molecule. 

Method Mean absolute error 

 

( 

 

(kcal/mol) 

Mean absolute error 

 

(percentage) 

 (kcal mol-1) (percentage) 
FMO2 0.43 4.1 
FMO3 0.06 0.5 

SMFA Level 1 0.46 4.3 
SMFA Level 2 0.15 1.3 
SMFA Level 3 0.04 0.4 
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Table 5. Average absolute errors in the MP2 binding energy per water molecule by basis set for FMO2 and 

FMO3 (kcal/mol). 

 6-31G(d) 6-31++G(d,p) 6-311++G(3df,2p) 
Cluster Size FMO2 FMO3 FMO2 FMO3 FMO2 FMO3 

16 0.29 0.09 0.18 0.05 0.68 0.04 
20 0.31 0.09 0.20 0.02 0.70 0.02 
32 0.33 0.11 0.38 0.07 0.84 0.04 
64 0.35 0.10 0.43 0.05   
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Table 6. Average absolute errors in the MP2 binding energy per water molecule for the SFMA method by 

fragmentation level and basis set (kcal/mol). 

Cluster Size 6-31G(d) 6-31++G(d,p) 6-311++G(3df,2p) 

 
Level 1    

16 0.32 0.31 0.41 
20 0.31 0.37 0.53 
32 0.44 0.17 1.32 
64 0.63 0.17  

Level 2    
16 0.07 0.09 0.16 
20 0.07 0.08 0.15 
32 0.15 0.21 0.05 
64 0.23 0.42  

Level 3    
16 0.007 0.02 0.02 
20 0.006 0.03 0.03 
32 0.07 0.12 0.03 
64 0.02 0.13  
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Table 7. Fragment size distribution for SMFA Level 2. 

Cluster Size (H2O)6 (H2O)5 (H2O)4 (H2O)3 (H2O)2 Nfrag 
16 0 8 21 56 30 115 
20 0 12 24 76 44 156 
32 4 21 18 55 27 125 
64 6 58 36 170 86 356 
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Table 8. Fragment size distribution for SMFA Level 3. 

Cluster Size (H2O)11 (H2O)10 (H2O)9 (H2O)8 (H2O)7 (H2O)6 (H2O)5 (H2O)4 Nfrag 
16 0 2 12 20 12 8 0 1 55 
20 0 2 17 37 37 20 0 2 115 
32 0 6 23 30 38 27 41 37 220 
64 7 30 79 99 108 94 100 83 626 
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Table 9.  Timing comparisona,b between fully ab initio MP2, FMO2-MP2 and FMO3-MP2 energy calculations.  

For the FMO calculations, the number of separated dimers (sd), SCF dimers (d), correlated dimers (cd), SCF 

trimers (t) and correlated trimers (ct) for each calculation is shown.  For FMO2 calculations RESDIM=3.5 and 

RCORSD=3 while for FMO3 calculations RESDIM=4.5, RCORSD=4 and RITRIM=3,-1,3.5,3. 

 6-31++G(d,p) 
 MP2 FMO2-MP2 FMO3-MP2 

Cluster 

Size 

Wall Time Wall Time Error 

(kcal/mol) 

sd/d/cd Wall Time Error 

(kcal/mol) 

d/t/ct 

16 394 12 2.65 0/120/120 89 0.72 120/560/560 
20 1119 17 4.00 0/190/187 161 0.28 190/1140/1140 
32 9989 36 9.30 7/489/454 429 1.73 496/4949/4797 

aFMO timings performed using six GDDI groups with 8 CPUs/group; MP2 timings performed on 48 CPUs. 
bTimes in sec., errors in kcal/mol. 
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 Table S1. For an atom with Cartesian coordinates (0,0,0), with charge q, dipole moment µ , and traceless 

Cartesian quadrupole , this table shows the coordinates and charges that mimic these moments. The small 

displacement, ε, is taken to be 0.01 Å. 

Coordinates Charge 

0,0,0 q 

ε,0,0 µx/2ε 

-ε,0,0 -µx/2ε 

0,ε,0 µy/2ε 

0,-ε,0 -µy/2ε 

0,0,ε µz/2e 

0,0,-ε -µz/2e 

ε,ε,0  

ε,0,ε  

0,ε,ε  

-ε,-ε,0  

-ε,0,-ε  

0,-ε,-ε  

ε,-ε,0  

ε,0,-ε  

0,ε,-ε  

-ε,ε,0  

-ε,0,-ε  

0,-ε,-ε  

 

 

Θ

− Θ zz − Θxy( )/ 6ε 2

− Θyy − Θxz( )/ 6ε 2

− Θxx − Θ yz( )/ 6ε 2

− Θ zz − Θxy( )/ 6ε 2

− Θyy − Θxz( )/ 6ε 2

− Θxx − Θ yz( )/ 6ε 2

− Θ zz + Θxy( )/ 6ε 2

− Θyy +Θxz( )/ 6ε 2

− Θxx +Θ yz( )/ 6ε 2

− Θ zz + Θxy( )/ 6ε 2

− Θyy +Θxz( )/ 6ε 2

− Θxx +Θ yz( )/ 6ε 2
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Table S3.  The SMFA error in the total energy is compared to the total dispersion energy for each 

cluster (in kcal/mol). 

 MP2/6-31g(d) 
 Level 1 Level 2 Level 3 

16 Waters E(disp) L1 error E(disp) L2 error E(disp) L3 error 
c1b -4.49 6.05 -0.95 0.13 -0.03 -0.08 

c1c16 -4.43 8.34 -0.95 0.35 -0.03 0.03 
c1c -4.29 12.88 -0.94 0.66 -0.03 0.02 
cage -4.35 11.24 -0.95 -0.52 -0.03 0.15 
cie -4.40 5.36 -0.94 -0.34 -0.03 0.11 
d2d -5.09 1.19 -1.03 1.28 -0.05 -0.02 
s43 -4.90 11.96 -1.02 4.60 -0.05 0.16 

       
20 Waters       

p3a -6.38 9.90 -1.53 0.91 -0.07 0.12 
p3b -6.32 10.85 -1.52 -0.09 -0.07 0.02 

pps_c -6.27 5.89 -1.40 0.82 -0.07 -0.06 
pps_d -6.50 12.64 -1.36 0.20 -0.07 0.14 
pps_e -6.12 12.66 -1.40 1.35 -0.07 0.02 
pps_f -6.13 17.05 -1.43 0.69 -0.07 0.35 
s4d2 -6.82 0.15 -1.45 1.27 -0.08 0.28 

       
32 Waters       

32_1 -15.10 23.17 -4.08 0.46 -1.43 3.86 
32_2 -15.54 21.24 -4.37 2.65 -1.54 4.03 
32_3 -14.80 28.37 -3.83 6.37 -1.32 4.97 

32ab_2b -15.49 21.81 -4.36 2.07 -1.54 3.96 
32ad_2b -15.70 27.32 -4.51 6.65 -1.57 3.82 
32h_2b -15.53 20.38 -4.37 2.08 -1.54 4.02 
32o_2b -15.53 21.05 -4.36 1.72 -1.54 4.01 
32z_2b -15.33 14.82 -4.11 4.44 -1.48 4.53 

       
64 Waters       

a -35.03 62.98 -10.93 12.64 -2.93 3.34 
b -35.00 63.50 -10.91 12.75 -2.92 3.41 
c -35.06 60.53 -10.94 12.64 -2.92 3.59 
d -34.89 68.42 -10.90 14.01 -2.92 3.16 
e -33.62 66.63 -9.82 11.48 -2.86 3.10 
f -33.76 68.50 -9.90 12.23 -2.88 3.14 
g -35.04 64.33 -10.94 12.81 -2.92 3.44 
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Table S3.  (continued) 

 MP2/6-31++G(d,p) 
 Level 1 Level 2 Level 3 

16 Waters E(disp) L1 error E(disp) L2 error E(disp) L3 error 
c1b -7.27 -9.40 -0.95 -2.73 -0.05 -0.79 

c1c16 -7.24 -4.42 -0.95 -1.11 -0.06 -0.18 
c1c -7.11 4.17 -0.94 0.51 -0.06 -0.03 
cage -7.21 -1.04 -0.95 -1.81 -0.05 0.20 
cie -7.21 -6.45 -0.94 -2.12 -0.06 0.23 
d2d -8.37 -20.93 -1.03 -3.38 -0.07 -1.11 
s43 -8.34 -9.05 -1.02 7.52 -0.07 -0.24 

       
20 Waters       

p3a -10.48 -9.34 -1.53 1.40 -0.12 -0.20 
p3b -10.40 -8.25 -1.52 -2.11 -0.12 -0.60 

pps_c -10.15 -18.31 -1.40 -4.70 -0.12 -1.24 
pps_d -10.82 -8.05 -1.36 -2.50 -0.12 -0.02 
pps_e -10.02 -6.25 -1.40 -2.62 -0.12 -0.54 
pps_f -10.11 2.05 -1.43 2.15 -0.12 1.09 
s4d2 -11.14 -30.46 -1.45 -5.55 -0.13 -0.76 

       
32 Waters       

32_1 -25.21 -6.20 -8.55 -0.47 -2.57 4.91 
32_2 -25.89 -9.76 -9.16 1.31 -2.76 6.62 
32_3 -24.68 -6.38 -7.94 4.02 -2.31 6.71 

32ab_2b -25.84 -8.79 -9.14 0.16 -2.76 6.50 
32ad_2b -26.02 -0.57 -9.41 5.04 -2.77 6.84 
32h_2b -25.85 -10.25 -9.16 -0.02 -2.77 6.58 
32o_2b -25.85 -9.40 -9.16 -0.88 -2.76 6.58 
32z_2b -25.35 -18.19 -8.63 5.18 -2.66 6.97 

       
64 Waters       

a -57.72 14.53 -18.27 23.54 -5.05 14.37 
b -57.68 15.85 -18.24 23.99 -5.05 14.43 
c -57.71 12.37 -18.28 23.16 -5.03 14.93 
d -57.68 21.31 -18.26 26.74 -5.05 13.79 
e -55.65 20.06 -16.47 26.78 -4.93 13.30 
f -55.87 22.82 -16.58 27.84 -4.95 13.88 
g -57.74 17.87 -18.28 23.70 -5.05 14.43 
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Table S3.  (continued) 

 MP2/6-31++G(3df,2p) 
 Level 1 Level 2 Level 3 

16 Waters E(disp) L1 error E(disp) L2 error E(disp) L3 error 
c1b -11.33 -14.99 -1.46 2.35 -0.08 -0.58 

c1c16 -11.28 -9.55 -1.46 2.27 -0.09 -0.06 
c1c -11.07 -0.21 -1.45 1.42 -0.09 -0.05 
cage -11.20 -3.45 -1.46 0.50 -0.08 0.27 
cie -11.23 -9.51 -1.45 0.93 -0.09 -0.12 
d2d -13.06 -22.87 -1.59 2.41 -0.12 -1.11 
s43 -13.03 -13.36 -1.57 9.05 -0.11 -0.63 

       
20 Waters       

p3a -16.32 -16.69 -2.35 3.97 -0.19 0.09 
p3b -16.17 -16.72 -2.34 2.86 -0.19 -0.91 

pps_c -15.81 -24.71 -2.16 3.34 -0.18 -1.26 
pps_d -16.85 -16.22 -2.09 1.44 -0.18 -0.37 
pps_e -15.61 -10.12 -2.15 1.98 -0.18 -0.60 
pps_f -15.72 -1.26 -2.20 1.78 -0.19 0.85 
s4d2 -17.38 -33.33 -2.23 2.18 -0.20 -1.07 

       
32 Waters       

32_1 -39.21 -31.35 -13.29 -15.55 -4.03 1.19 
32_2 -40.26 -37.55 -14.24 -15.44 -4.33 1.80 
32_3 -38.38 -33.28 -12.30 -8.30 -3.60 1.90 

32ab_2b -40.19 -36.90 -14.22 -16.65 -4.33 1.77 
32ad_2b -40.42 -25.41 -14.62 -12.33 -4.34 2.07 
32h_2b -40.20 -38.25 -14.26 -17.01 -4.35 1.60 
32o_2b -40.21 -293.75 -14.25 -17.84 -4.34 1.71 
32z_2b -39.43 -45.31 -13.43 -11.04 -4.19 1.53 
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Figure S1.  Geometries of all clusters of 16 waters studied. 
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Figure S2.  Geometries of all clusters of 20 waters studied. 
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Figure S3.  Geometries of all clusters of 32 waters studied. 
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Figure S4.  Geometries of all clusters of 64 waters studied. 
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Chapter 4. Open-Shell Formulation of the Fragment Molecular Orbital Method 

A paper published in The Journal of Chemical Theory and Computation 

Spencer R. Pruitt, Dmitri G. Fedorov, Kazuo Kitaura, Mark S. Gordon 

Abstract 

Performing accurate calculations on large molecular systems is desirable for closed and open-shell systems.  In 

this work, the fragment molecular orbital (FMO) method is extended to open-shell systems and implemented in 

the GAMESS (General Atomic and Molecular Electronic Structure System) program package.  The accuracy of 

the method is tested, and the ability to reproduce reaction enthalpies is demonstrated.  These tests also 

demonstrate its utility in providing an efficient means to model large open-shell systems. 

1. Introduction 

Recently, a large number of fragment-based methods1-7 have been developed, including the fragment 

molecular orbital (FMO) method.8-10  The aim of these methods is to treat complex molecular species efficiently, 

while retaining ab initio accuracy, by dividing the system into many much smaller fragments. However, few of 

these methods are capable of treating open-shells.11  Several wave function types have already been interfaced 

with FMO,12-17 however most of them are for closed-shell methods. The only exception is the multi-

configuration self-consistent field (MCSCF),14 which can treat both closed and open-shell species.  Although 

the MCSCF method is very useful in some systems, it is also desirable to have a single-reference open-shell 

method, which could be efficiently combined with restricted open-shell (RO) second order Møller-Plesset 

perturbation theory (MP2)18 or coupled cluster theory (CC).19 

Open-shell systems play a very important role in many processes, for instance, in radical chemistry,20 

electron transfer,21 and many transition metal compounds.22 In addition, transition states in chemical reactions 

involve breaking chemical bonds and thus possess considerable open-shell character. Although more difficult 

cases such as transition metal complexes may require a more sophisticated treatment (e.g. MCSCF), in many 

organic, inorganic and biochemical systems the open-shell character can be well described by an open-shell 

single-reference wave function. Therefore, it is useful to be able to perform large-scale calculations of open-

shell systems with single-reference methods. The FMO method is particularly appealing in this regard, since it 

has been shown to accurately reproduce fully ab initio calculations with high accuracy.6,9 Due to the inherently 

parallel nature of the method, it also scales ~ linearly with system size. 

2. Methodology 

 The n-body FMO energy (FMOn) of N fragments is given by:8 
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EFMO2 = EI
I

N

∑ + EIJ − EI − EJ( )
I >J

N

∑         (1) 

EFMO3 = EFMO2 + EIJK − EI − EJ − EK − ΔEIJ − ΔEJK − ΔEIK( )
I >J >K

N

∑      (2) 

where 

ΔEIJ = EIJ − EI − EJ           (3) 

and EI, EIJ and EIJK are the monomer (single fragment), dimer (fragment pair) and trimer (fragment triple) 

energies, respectively, computed in the electrostatic field of other fragments.6 

 This expression is also used for the restricted open-shell FMO method.  The computational scheme is 

methodologically similar to that of FMO-based MCSCF or time-dependent23 density functional theory (DFT), 

with one fragment chosen to be the open-shell fragment.  There are two types of dimers and trimers in an open-

shell system: (a) open-shell, if they include the open shell fragment; (b) closed shell otherwise.  The 

electrostatic field added to all monomer, dimer and trimer calculations is computed from the total density of 

either open- or closed-shell fragments. In this work all open-shell systems have doublet spin multiplicity; 

however, there is no limitation on the multiplicity of the open-shell FMO method.  The FMO energy has been 

implemented for the RO-based Hartree-Fock method (ROHF), MP2 (ROMP2) and CC (ROCC).  

In addition, a multilayer scheme24 was also implemented in which several layers with varying levels of 

electronic structure theory (HF, MP2, CC) can be defined.  The multilayer FMO method uses the notation of 

listing the wave functions in increasing order of layers, e.g., FMO2-ROMP2:ROCC means that the fragment 

densities are obtained self-consistently at the uncorrelated level (ROHF) and used in the correlated calculations 

at the ROMP2 level for the less important fragments (substituents) and ROCC for (for example) a reaction 

center. Dimer calculations are performed at the lower level of the two layers to which the two fragments belong. 

In the case of the reaction described below there was only one fragment in the higher level, so that all dimer 

calculations were done with ROMP2.25 The same basis set is used in both layers. 

Especially for CC, which is a very steeply scaling method (N7) with the system size N, the use of FMO 

is beneficial even for very small systems, such as that with only three fragments discussed below. In addition to 

the computational cost scaling, CC requires very large memory; the huge memory demand prevented the full ab 

initio CC calculations while the FMO-CC computations are feasible.  

The open-shell FMO code was parallelized with the generalized distributed data interface (GDDI),26,27 

using a two-level hierarchical scheme.  Since the open-shell MP2 method in GAMESS (General Atomic and 

Molecular Electronic Structure System)28 is fully parallelized, it can take advantage of both levels of GDDI.  
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This is not the case for the open-shell CC code, which can only take advantage of the inherent coarse-grained 

level parallelism of the FMO method using GDDI.  All methods discussed here have been implemented in 

GAMESS.   

All calculations discussed here used the default values of thresholds, except for water clusters the point 

charge representation of the electrostatic potentials in FMO was used. Spherical basis functions were used 

throughout, and the core electrons (e.g., 1s on C and O) were not correlated in MP2 and CC. 

3. Tests 

3.1 Open-shell FMO2 and FMO3 Calculations on OH(H2O)5 Clusters.   

 A preliminary test of the open-shell FMO method employed clusters of six water molecules.  The 

ability to accurately model the solvated OH radical has implications in biological applications and atmospheric 

processes.29  The large charge transfer present in solvated OH clusters adds an additional degree of difficulty, 

providing an excellent test case for the open-shell FMO method. 

The structures of the six clusters shown in Figure 1 were determined by optimizing previously 

determined minima30 with MP2 and the aug-cc-pVTZ basis set.31  To create the open-shell test systems, one 

hydrogen atom was arbitrarily removed from one of the water molecules in each cluster.  Fragments were 

chosen by placing the open shell OH in a fragment with both nearest neighbor H2O molecules, while placing the 

other H2O molecules in fragments by themselves, with the exception of the prism and bag isomer.  For these 

two isomers, there were two other H2O molecules with a significant interaction between them.  This required 

them to be placed into one fragment together, while the open shell OH was placed in a fragment with only one 

nearest neighbor.  The final fragmentation scheme created four FMO monomers for all isomers.  

Errors for FMO2-ROHF calculations (Table 1) relative to ab initio calculations are between 0.2-2.8 

kcal/mol, while the errors are between 0.0-2.7 kcal/mol for FMO2-ROMP2.  The addition of ab initio three 

body interactions with FMO3-ROHF significantly reduces the error to 0.0-0.1 kcal/mol, while the error for 

FMO3-ROMP2 falls to 0.1-0.3 kcal/mol.  The improvement in accuracy for FMO3 is not a surprising result, as 

the importance of three-body effects in water has been shown previously.12,32 

Relative energetics (Table 2) are of similar accuracy, with the ordering of isomers being captured 

correctly with both FMO2 and FMO3, illustrated in Figure 2.  The choice of fragments is important for the 

accurate reproduction of the relative energies, especially for FMO2 and in systems in which fragments may 

have very strong interactions such as charge transfer.  These strongly interacting fragments should be grouped 

together to improve accuracy. 

Considering the distributed memory requirements of the ab initio ROMP2 calculations (~2 GB of 

RAM) versus that of the FMO2-ROMP2 calculation (~512 MB of RAM) or the FMO3-ROMP2 calculation 
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(~1GB of RAM), the open-shell FMO method is capable of providing accurate energies at a much lower cost.  

One can imagine that as the size of the cluster N increases, the memory requirement of the ab initio calculation 

will also increase substantially (~N4); however, for FMO it will remain the same, no matter how large the 

cluster is. 

3.2 Multilayer FMO2 Calculation of the Reversible Addition Fragmentation Chain Transfer (RAFT) 

Reaction Enthalpy (Figure 3).   

As a further test of the open-shell FMO method, the initiation step in the RAFT reaction33,34 was 

chosen as a small test case.  The initiation step consists of two reactants, one an open-shell radical, that combine 

to form an open-shell radical product.  Initial structures were optimized using DFT with the B3LYP functional 

and the 6-31G(d) basis set.35  FMO2-ROMP2 single point energy calculations using the 6-311G(d,p) basis set 

were performed with the fragmentation scheme shown in Figure 3.  Higher level calculations were also 

performed, using the completely renormalized coupled cluster single and double excitations using left 

eigenstates for perturbative triple excitation corrections (CR-CC(2,3))19,36 method with the 3-21G basis set to 

model the open-shell fragment, and MP2 with the 3-21G basis set to model the closed shell fragments (FMO2-

MP2:CR-CC(2,3)), shown in Figure 4.  The reason for using a smaller basis set is the huge memory 

requirements for the CC code, which even for 3-21G was 8 GB, while for the 6-31G(d) basis set the 

requirements are more than 32 GB. 

 Table 3 gives the absolute energy differences between ab initio ROMP2 and FMO2-ROMP2 for both 

reactants and product of the RAFT reaction.  The FMO2-ROMP2 method gives accurate energies, with errors 

between 0.4-0.9 kcal/mol.  This accuracy in absolute energies translates to equivalent accuracy when 

calculating the reaction enthalpy (Table 4).  Comparing the enthalpy from FMO2-ROMP2 using the 6-

311G(d,p) basis set with the ab initio ROMP2 enthalpy, the error is only 0.9 kcal/mol. Calculations performed 

with the 3-21G basis set also show very good agreement between ab initio ROMP2 and FMO2-ROMP2 

calculations.  With the addition of the CC correction in the FMO2-MP2:CR-CC(2,3) calculation the enthalpy 

changes by +2.2 kcal/mol.  This suggests that the use of ROMP2 to calculate enthalpies is adequate in this case, 

however, a higher level of theory may be required in other instances to properly describe open-shell systems.     

4. Conclusions 

 The open-shell FMO method has been implemented in the GAMESS program package and 

parallelized using GDDI for the HF, MP2, and CC levels of electronic structure theory.  The accuracy of the 

method was tested by calculating the absolute and relative energetics of open-shell molecular clusters.  The 

ability of the method to reproduce reaction enthalpies was also tested using the RAFT reaction.  It was 

demonstrated that in both cases the open-shell FMO method provides energies and properties within 0.0-2.0 

kcal/mol of ab initio calculations. 
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 The need for a single reference open-shell FMO method was fulfilled through this work, providing a 

scalable method for use on large chemical systems such as the RAFT reaction.  The combination of accuracy 

and reduction in computational expense provides a means for accurate calculations on much larger open-shell 

radical chemical systems than was previously available. 
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Figure 1.  The six isomers of OH(H2O)5 clusters used for testing. Open shell OH molecules are circled and the 

naming convention is from ref. 25. 
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Figure 2.  Graph of the relative energies of the six OH(H2O)5 clusters computed using ab initio ROMP2, 

FMO2-ROMP2 and FMO3-ROMP2. 
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Figure 3.  Reaction scheme for the RAFT reaction with the choice of FMO fragments shown in blue. 
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Figure 4.  Reaction scheme for the RAFT reaction with the multilayer FMO details: higher layer fragments 

(CC) are circled in red and lower levels fragments (MP2) are in green dashed circles. 
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Table 1.  Absolute errors between ab initio ROMP2 and FMO-ROHF for six OH(H2O)5 clusters. 

 absolute errors (kcal/mol) 
 aug-cc-pVTZ 

isomer FMO2-ROHF FMO3-ROHF  FMO2-ROMP2 FMO3-ROMP2 
Prism 0.2 0.0  0.0 -0.1 
Cage 1.4 0.1  1.3 0.1 
Bag 2.8 0.0  2.7 0.1 

cyclic 1.7 0.1  1.6 0.3 
boat 1.7 0.1  1.6 0.3 
book 1.4 0.1  1.3 0.2 
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Table 2.  Comparison of the ROMP2 relative energiesa of six OH(H2O)5 clusters.  

 relative energies (kcal/mol) 
 aug-cc-pVTZ 

isomer ROMP2 FMO2-ROMP2 FMO3-ROMP2 
prism 0.0 0.0 0.0 
cage 1.4 2.7 1.6 
bag 2.5 5.2 2.7 

cyclic 3.9 5.5 4.3 
boat 4.7 6.3 5.0 
book 8.8 10.2 9.1 

a Zero energy for all methods is set to be the prism isomer. 
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Table 3.  Absolute errors between ab initio ROMP2 calculations and FMO2-ROMP2 for the RAFT reaction. 

 absolute errors (a.u.) 
 6-311G(d,p) 
 ROMP2 FMO2-ROMP2 error 

(kcal/mol) reactant 1 -518.94377299 -518.94481925 -0.7 
reactant 2 -1235.33260039 -1235.33407266 -0.9 
product -1754.31552043 -1754.31616825 -0.4 

 



www.manaraa.com

 181 

Table 4.  Calculated enthalpy of the RAFT reaction using ab initio ROMP2, FMO2-ROMP2 and FMO2-

MP2:CR-CC(2,3). 

 

 

 

  
energy (a.u.) 

enthalpy  

(kcal/mol) 

basis set method reactant 1 reactant 2 product  
3-21G FMO2-ROMP2 -515.27782025 -1228.15256231 -1743.46127536 -19.4 
3-21G FMO2-MP2:CR-CC(2,3) -515.37480438 -1228.23664205 -1743.63878524 -17.2 

6-311G(d,p) FMO2-ROMP2 -518.94481925 -1235.33407266 -1754.31616825 -23.4 

3-21G ROMP2 -515.27782024 -1228.15256232 -1743.46133847 -19.4 
6-311G(d,p) ROMP2 -518.94377300 -1235.33260039 -1754.31552043 -24.6 
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Chapter 5. Geometry Optimizations of Open-Shell Systems with the Fragment Molecular Orbital 

Method 

A paper submitted to The Journal of Physical Chemistry A 

Spencer R. Pruitt, Dmitri G. Fedorov, Mark S. Gordon 

Abstract 

The ability to perform geometry optimizations on large molecular systems is desirable for both closed and open-

shell species.  In this work, the restricted open-shell Hartree Fock (ROHF) gradients for the fragment molecular 

orbital (FMO) method are presented.  The accuracy of the gradients is tested, and the ability of the method to 

reproduce adiabatic excitation energies is also investigated.  Timing comparisons between the FMO method and 

full ab initio calculations are also performed, demonstrating the efficiency of the FMO method in modeling 

large open-shell systems. 

1. Introduction 

 With recent increases in computational power the need for methods that are able to exploit the 

massively parallel nature of modern computers is becoming more important.  A number of methods have been 

developed1-7 that attempt to exploit the ability to divide large systems into more computationally tractable 

pieces.8  One such method, the fragment molecular orbital (FMO) method9-11, has been at the forefront of this 

effort, particularly since the development of the generalized distributed data interface (GDDI).12  The GDDI 

allows the FMO method to take advantage of large, modern computer clusters and massively parallel 

computers, facilitating the solutions of  much larger chemical systems than has previously been possible.6   

With the broad range of interests in chemical research, including silicon nano pores,13 proteins,14 

condensed phases15 and radical chemistry,16 there is also an increasing need for broadened functionality to be 

added to the FMO method.  Since the original formulation9-11,17 there have already been a number of extensions 

added to the FMO method to help treat a broad range of chemical problems, including second order Møller-

Plesset perturbation theory (MP2),18 coupled cluster theory (CC),19 density functional theory (DFT),20 solvation 

models such as the effective fragment potential (EFP)21 and the multilayer formulation of the FMO method 

(MFMO).22 

Until recently, the only way to treat open-shell systems with the FMO method was to use the multi-

configuration self-consistent field implementation (FMO-MCSCF),23 which can treat both closed and open-shell 

species.  Although the MCSCF method can be very useful in treating multi-reference systems, it is also 

desirable to have a single-reference open-shell method that can be efficiently combined with restricted open-

shell second order Møller-Plesset perturbation theory (ROMP2)13 or coupled cluster theory (CC).14  This ability 

to treat systems containing single-reference open-shell character was recently added to the FMO method with 
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the implementation of the restricted open-shell wave function (FMO-ROHF)16.  Since the original effort was 

limited to single point energy calculations, it is the goal of the present work to develop open-shell FMO energy 

gradients and to demonstrate the efficacy of the FMO-ROHF method in geometry optimizations24 and excitation 

energy calculations.25 

2. Methodology 

 Since the details of the FMO-ROHF method and relevant functionality have been discussed in detail 

previously11,26 a brief overview of the general theory is presented here. 

The FMO energy of N fragments for the n-body FMOn expansion is given by:17 

EFMO2 = EI
I

N

∑ + EIJ −EI −EJ( )
I>J

N

∑         (1) 

EFMO3 = EFMO2 + EIJK −EI −EJ −EK −ΔEIJ −ΔEJK −ΔEIK( )
I>J>K

N

∑      (2) 

where 

ΔEIJ = EIJ −EI −EJ           (3) 

and EI, EIJ and EIJK are the monomer (single fragment), dimer (fragment pair) and trimer (fragment triple) 

energies, respectively, computed in the electrostatic field of all other fragments.17  The first step of all FMO 

calculations is to converge the electronic state of each fragment (monomer) with respect to the electrostatic field 

of the whole system.  This is followed by all dimer calculations for FMO2 and all trimer calculations for FMO3, 

performed in the field determined in the monomer step. 

 The expressions in eqs 1 and 2 that are used for the restricted open-shell FMO method resemble those 

of the closed-shell method.17 The FMO-ROHF computational scheme is similar in nature to the FMO-based 

MCSCF or time-dependent DFT (FMO-TDDFT) methods.15 In all of these schemes, one fragment is chosen to 

be the open-shell fragment, treated with the corresponding wave function or density, while all other fragments 

are taken to be closed shell species.  Two types of dimers and trimers are present in an open-shell FMO 

calculation: (a) open-shell if they include the open shell fragment; (b) closed shell otherwise.  The electrostatic 

field added to all n-mer (monomer, dimer, trimer) calculations is computed from the total density of either 

open- or closed-shell fragments. In covalently bonded systems, the boundaries are treated exactly as in the 

closed-shell FMO method,9,17 that is, by assigning two electrons from the detached bond to one fragment and 

none to the other.  
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There is an important difference between the perturbative-like treatment used in the configuration 

interaction (CI) and TDDFT approaches and the treatment used in the ROHF and MCSCF approaches.  For CI 

and TDDFT calculations, the molecular orbitals and their energies from the ground electronic state are used in 

the subsequent excited state calculation without additional orbital relaxation. In contrast, for ROHF and 

MCSCF calculations the orbitals are optimized for the state of interest. In addition, within the FMO method, the 

embedding electrostatic field in CI and TDDFT calculations is computed for the ground state, whereas this field 

is fully relaxed for the state of interest in ROHF and MCSCF calculations. The importance of the electrostatic 

field relaxation has been discussed recently in conjunction with EFP-based excitation studies.27 

Following the derivation for the closed shell FMO gradient,28 the gradient for the open-shell FMO-

ROHF method has been derived by taking the derivative with respect to a nuclear coordinate of the energy in 

eqs 1 and 2 for FMO2 and FMO3, respectively. This work, similarly to closed-shell TDDFT,29 follows the 

derivation of the gradient in which the small contributions arising from the derivatives of the electrostatic 

potentials are neglected. The latter contributions will be addressed in a subsequent effort. The gradient was 

implemented in a development version of the GAMESS (General Atomic and Molecular Electronic Structure 

System) program package30 and fully parallelized with the GDDI.12 

For molecular clusters the Mulliken point charge representation of the electrostatic potential in the 

FMO method was used.31 More specifically, all fragment calculations were performed in the field of point 

charges derived self-consistently from the fragment densities, and were repeated until their densities converged 

with respect to the field (dimers and trimers are computed in the converged monomer field only once). The core 

electrons (e.g., 1s on both C and O) were not correlated during the MP2 calculations.  Otherwise, all 

calculations discussed below used the default values for all FMO method approximations. 

3. Results 

Test calculations are organized by first evaluating the accuracy of the open-shell FMO method for 

hydroxyl radical solvated by seven water molecules using the same geometry for both FMO and ab initio 

calculations. Next, the accuracy of the newly developed analytic gradient on solvated phenol and polypeptides 

is investigated, followed by full geometry optimizations of a solvated phenol system, two isomers of a 

polypeptide, as well as a small test system composed of the products of a reversible addition-fragmentation 

transfer (RAFT) reaction. Finally, the open-shell FMO method is applied to a small protein.32 

3.1 Accuracy of Open-Shell FMO Energies for a Solvated Hydroxyl Radical  

The use of water clusters provides a convenient test system for non-bonded molecular clusters.  The 

ability to accurately model water clusters requires a proper treatment of three-body effects, as has been shown 

previously17,18,33.  The implications of solvated OH radicals can be found in many biological processes and 

atmospheric reactions.34 In addition to three-body effects, other effects such as electron correlation and strong 
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charge transfer adds another degree of difficulty to the solvated OH clusters when compared to purely water 

clusters. 

 The structures of the eight OH(H2O)7 clusters considered in this work were determined by the 

following procedure using previously determined minima35: 

1. The structures of (H2O)8 were optimized at the MP2 level of theory using the aug-cc-pVTZ basis set.36 

2. One hydrogen atom was arbitrarily removed from a single water molecule in each cluster to create an 

open-shell system with doublet multiplicity. 

3. The OH radical in each cluster plus the two nearest neighbor H2O molecules comprise one fragment. 

The other fragments each contain one water molecule. 

4. Test calculations were performed to determine if any additional merging into larger (and fewer) 

fragments was advisable based upon the level of charge transfer between fragments.  

5. Single point MP2 energy calculations were performed with ab initio (fully MP2), FMO2 and FMO3. 

The final fragmentation scheme can be found in Table 1, while Figure 1 shows the eight isomers used including 

the location of the open shell OH· radical. The names assigned to the clusters are taken from previous work35.  

 Errors for both the ROHF and ROMP2 levels of theory, calculated as 

Error = EFMOn - Eab initio          (4) 

where FMOn represents the level of FMO used, are shown in Tables 2 and 3.  All subsequent errors were 

calculated using eq 4.  The FMO2 error for the aug-cc-pVDZ basis set is in the range 0.5-10 kcal/mol for ROHF 

(Table 2) and 0.1-9.3 kcal/mol for ROMP2 (Table 3), with mean absolute errors (MAE) of 5.1 kcal/ and 4.3 

kcal/mol for ROHF and ROMP2, respectively.  The FMO3 errors are much lower in both cases, 0.1-1.9 

kcal/mol for both ROHF and ROMP2, with MAE values of 0.5 and 0.7 kcal/mol respectively.  Improving the 

basis set to aug-cc-pVTZ reduces the FMO2 errors slightly; however the MAE is still 3.4 kcal/mol for ROHF 

and 3.1 kcal/mol for ROMP2.  For both levels of theory the FMO2 errors are much too large to be considered 

reliable, although improvements can be made by placing more than one water molecule in each fragment.  With 

the aug-cc-pVTZ basis set, the FMO3 errors also decrease (a similar trend was observed for closed shell 

systems31), producing a MAE of 0.24 kcal/mol for ROHF and 0.35 kcal/mol for ROMP2.   

 More important than errors in the total energies is how well the relative energies of the different 

isomers are captured.   Table 4 shows the ROMP2 relative energies of the ten clusters, with Figures 2-5 

showing both the ROHF and ROMP2 relative energies graphically.  Both ROHF and ROMP2 relative energies 

reinforce the conclusions drawn based upon the total energy errors, namely the unreliability of FMO2 for this 
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particular system, as well as the improved agreement with ab initio results with an increase in basis set size.  

The MAE for the FMO3 relative energies is less than 1 kcal/mol for both the aug-cc-pVDZ and aug-cc-pVTZ 

basis sets at 0.96 and 0.30 kcal/mol respectively.  

 Timing comparisons were also obtained to analyze the performance of the open-shell FMO method for 

energy calculations using the lowest energy isomer (S4) of the OH(H2O)7 clusters.  MP2 energy calculations 

using ROMP2, FMO2-ROMP2 and FMO3-ROMP2 were performed on a Cray XE6 computer with two 2.4 

GHz AMD Opteron 64-bit 8-core processors and 32 GB of RAM per node.  All FMO calculations used the 

GDDI, assigning individual fragment n-mer calculations to separate nodes or “groups”, each group performing 

its fragment calculation in parallel.  Both ab initio and FMO timings were performed on 4, 6 and 8 nodes, for 

totals of 4, 6 and 8 groups when using the GDDI with FMO.  The timings in Table 5 show the ab initio, FMO2 

and FMO3 calculations scale quite well when doubling the number of nodes.  In terms of time savings, the 

FMO2 calculations take an order of magnitude less time than the full ab initio calculations while the FMO3 

calculations provide no time savings for a system this small.   

While there is little time savings achieved for FMO3 for these small clusters, the real advantage of 

using FMO3 for a system of this size is the memory requirements, illustrated in Table 5. Compared to the 

computational time scaling of N5, MP2 memory requirements generally scale as N4, while the FMO memory 

requirement is determined by the largest n-mer size (dimer for FMO2 and trimer for FMO3) which is much 

smaller than the full system.  This reduction in memory requirements through the use of the FMO method is 

very powerful for large system calculations since the memory requirements are independent of the total system 

size N. 

3.2 Comparison of FMO-ROHF Analytic Gradient and ab initio Analytic Gradient 

 The accuracy of the FMO-ROHF gradient was investigated by explicit comparison with ab initio fully 

analytic gradient calculations using the solvated phenol and polypeptide test systems at both their equilibrium 

geometries and at selected non-equilibrium structures.  Timing comparisons were also made between the fully 

analytic ab initio gradient and the FMO2 analytic gradient to show the efficacy of FMO2 for geometry 

optimizations.  Due to the relatively small size of the test systems, a timing comparison between ab initio and 

FMO3 gradients was not made.  

 Results from single point gradient calculations at equilibrium geometries are shown in Table 6.  The 

maximum gradient as well as the root mean squared (RMS) gradient and the mean absolute error (MAE) are 

compared for all three structures.  For the two isomers of (Ala)2Phe(Ala)2, the error in the maximum gradient is 

between 0.01 and 0.03 mH/bohr for both FMO2 and FMO3; the error in the RMS gradient is less than 0.01 

mH/bohr in all cases.  The error in the maximum gradient for the solvated phenol system is comparable at 0.01 

mH/bohr for FMO2 and FMO3, while the error in the RMS gradient is similar to that of the (Ala)2Phe(Ala)2 
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system at less than 0.01 mH/bohr for both FMO2 and FMO3.  In all cases, the MAE is less than 2.6x10-5 

mH/bohr.  Corresponding results from single point gradient calculations at non-equilibrium geometries are 

shown in Table 7.  The error in the maximum gradient for the two isomers of (Ala)2Phe(Ala)2 is between 0.5 

and 1.1 mH/bohr for both FMO2 and FMO3; the error in the RMS gradient is less than 0.1 mH/bohr in all cases.  

The error in the maximum gradient for the solvated phenol system is 0.2 mH/bohr for FMO2 and 0.1 mH/bohr 

for FMO3.  The error in the RMS gradient is significantly smaller than those of the (Ala)2Phe(Ala)2 systems, 

with errors of 8.0x10-6 mH/bohr for FMO2 and 1.7x10-5 for FMO3.  In all cases, the MAE is less than 1.5 

mH/bohr.  

Timing comparisons on the initial geometry of the α-(Ala)2Phe(Ala)2  system were performed on four 

nodes of a Cray XE6 computer with two 2.4 GHz AMD Opteron 64-bit 8-core processors and 32 GB of RAM 

per node.  All FMO calculations employed the GDDI, with group division chosen to be one node per group.  

The ab initio ROHF gradient calculation took approximately 362 seconds while the FMO2-ROHF gradient 

calculation only took approximately 249 seconds.  This corresponds to a time savings of approximately 30% 

compared to the full ab initio calculation.   

3.3 Open-shell Optimizations and Adiabatic Excitation Energies of C6H5OH(H2O)8 

 To further investigate the accuracy of the open-shell FMO method compared to conventional ab initio 

methods, first consider a closed shell cluster consisting of one phenol molecule solvated by eight water 

molecules.  The FMO fragmentation scheme used for this system, shown in Figure 6, places the phenol 

molecule and the two closest H-bonded water molecules in one fragment.  Each of the remaining water 

molecules was chosen as a single fragment, creating seven fragments total.  Both FMO2 and FMO3 

optimizations were performed using the same fragmentation scheme.  The starting structure for both ab initio 

and FMO optimizations was obtained by placing five of the eight water molecules approximately 5-6 Å away 

from the phenol molecule on the x, y and z coordinate axes, with the remaining three molecules placed around 

the OH moiety (Figure 7).  This starting structure was then optimized using the EFP1 method37 to model the 

water molecules and RHF with the STO-3G basis set to model the phenol molecule, with the resultant geometry 

used as the initial structure in all further optimizations.  RHF and ROHF optimizations were performed.  Closed 

and open shell MP2 energy calculations were then performed at the RHF and ROHF equilibrium geometries.  

For the ab initio ROHF calculation the multiplicity of the system was chosen as a triplet, with the singly 

occupied orbitals located on the phenol molecule.  For both FMO2 and FMO3 calculations the triplet electronic 

configuration was placed on the fragment containing the phenol molecule, because the triplet state is mainly 

localized in this region.  

 Table 8 shows the errors in kcal/mol for FMO2 and FMO3 total energies relative to fully ab initio 

energies, using the 6-31G(d) basis set.  For the closed shell (singlet) optimizations, the FMO2 method produces 

an error of -0.23 kcal/mol, while the FMO2 error for the open-shell (triplet) optimizations is -0.48 kcal/mol.  As 
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expected for a system containing more than two water molecules, the FMO3 method produces smaller errors of 

0.07 kcal/mol for the singlet optimizations and 0.08 kcal/mol for the triplet optimizations. For the FMO3 

optimizations it is apparent that the size of the error is consistent between singlet and triplet states, while the 

FMO2 errors approximately double upon going from the singlet to the triplet.  Despite this doubling of the 

FMO2 error, the actual values are all less than 0.50 kcal/mol, which is well within chemical accuracy.  The 

errors for the MP2 energy calculations at the RHF and ROHF optimized geometries are also all less than 1.00 

kcal/mol.  Adiabatic excitation energies were also calculated, giving FMO2 errors of -0.25 kcal/mol and -0.70 

kcal/mol for the HF and MP2 levels of theory, respectively.  FMO3 again outperforms FMO2 for the excitation 

energies, giving errors of less than 0.10 kcal/mol for both levels of theory. 

 The root mean squared deviation (RMSD) between the ab initio and FMO optimized structures was 

computed using the unit quaternion method38a implemented in the freely available program Jmol.38b Table 9 

shows the RMSD values for both the singlet and triplet geometries optimized with FMO2 and FMO3.  The 

RMSD value for FMO2 is lower for the singlet structure than for the triplet structure, with values of 0.038 Å 

and 0.254 Å respectively.  The performance of FMO3 is significantly better, producing a RMSD value of 0.013 

Å for the singlet structure and 0.006 Å for the triplet structure.  As mentioned previously for the OH(H2O)7 

system, the improved accuracy of the FMO3 method for water clusters is not surprising considering the 

importance of many-body polarization effects.  Despite the decrease in accuracy for the FMO2 optimized 

structures, the overall performance of FMO2 is acceptable.  The higher-order many-body effects could be 

captured using FMO2 by having two water molecules per fragment, thereby lowering the errors in energy as 

well as the RMSD values, but this would increase the computational expense.  

3.4 Open-shell Optimizations and Adiabatic Excitation Energies of (Ala)2Phe(Ala)2 Chains 

To test the ability of the FMO-ROHF method to treat larger, covalently bonded systems, two different 

isomers of the (Ala)2Phe(Ala)2 chain were chosen for geometry optimizations.  Each geometry optimization was 

performed using HF, FMO2-HF and FMO3-HF with the 6-31G(d) basis set, followed by MP2, FMO2-MP2 and 

FMO3-MP2 single point energy calculations.  Both singlet and triplet structures were optimized with the above 

methods and adiabatic excitation energies from the singlet to the triplet state were calculated. The default FMO 

method settings for the electrostatic field were used for all optimizations and energy calculations.  A one amino 

acid residue per fragment partition was used, and the open shell fragment was chosen to contain only 

phenylalanine. 

 Table 10 shows the errors in the energy for FMO optimized structures relative to the corresponding ab 

initio optimized structures, as well as the errors in the MP2 energies calculated at the RHF and ROHF 

optimized geometries.  For all FMO2 HF optimized structures the errors in the total energy are between -0.47 

and -1.89 kcal/mol, with errors in the excitation energies of -0.85 kcal/mol for the alpha isomer and -0.49 

kcal/mol for the beta isomer.  The MP2 energies calculated at the HF geometries show a decrease (relative to 
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HF) in the error of the FMO2 total energy to 0.17 and 0.64 kcal/mol for the singlet and triplet structures of the 

alpha structure, respectively, with an error of -0.47 kcal/mol for the excitation energy.  However, the MP2 total 

energy errors increase to -1.48 and -2.59 kcal/mol for the singlet and triplet structures of the beta isomer, while 

the error in excitation energy only increases slightly to -1.11 kcal/mol.  The FMO3 errors in the total HF energy 

for the optimized structures are 0.01 and -0.62 kcal/mol for the singlet and triplet alpha isomer structures 

respectively, with an error of 0.61 kcal/mol in the excitation energy.  For the beta isomer, FMO3 produces total 

HF energy errors of 0.02 and -0.49 kcal/mol for the optimized singlet and triplet structures and an error of -0.47 

kcal/mol in the excitation energy.  MP2 single point energy calculations performed with FMO3 give total 

energy errors of -0.09 and -0.32 kcal/mol for the singlet and triplet states of the alpha isomer.  The beta isomer 

again gives slightly worse results for FMO3, with total energy errors of -0.04 and -0.68 kcal/mol for the singlet 

and triplet structures.  The errors in the FMO3 excitation energies are -0.23 kcal/mol for the alpha isomer and -

0.64 kcal/mol for the beta isomer.  For both FMO2 and FMO3, the triplet structures of the (Ala)2Phe(Ala)2 

isomers give errors that are much worse than those obtained in the corresponding singlet optimizations.  

However, in all but one case, FMO3 reduces the error by greater than half of the FMO2 errors.  The one 

exception to this trend is the FMO3-ROMP2 energy, which is roughly twice as large as the FMO2-ROMP2 

error for the triplet state of the alpha isomer.  All excitation energies produced by FMO3 are between 0.02 and 

0.47 kcal/mol lower than the FMO2 excitation energies.   

The total RMSD values for FMO2 and FMO3 compared to the ab initio optimized structures are 

shown in Table 11.  The FMO2 geometries are within 0.563 Å of the ab initio geometries in the worst case, 

corresponding to the triplet state of the beta isomer.  The singlet state of the beta isomer produces a similar error 

of 0.484 Å for FMO2.  The FMO2 RMSD values are much lower for the alpha isomer at 0.177 and 0.210 Å for 

the singlet and triplet structure respectively.  FMO3 performs significantly better than FMO2 in all cases except 

the triplet structure of the alpha isomer.  The error in this one case is 0.254 Å, compared to an error of 0.210 Å 

for FMO2.  This is indicative of a decreased importance of three-body effects in the triplet state of the alpha 

isomer.  FMO3 produces errors of 0.026 and 0.019 Å for the singlet structures of the alpha and beta isomers, as 

well as an error of 0.176 Å for the triplet state of the beta isomer.  

3.5 Optimization of (CH3)2C(CN)-CH2-CH(Ph)-CH2-C•H(Ph)  

 As an additional test of the ability of the open-shell FMO method to optimize a small system, the open-

shell reactant from the initiation step in a RAFT reaction39 was chosen.  The initiation step consists of two 

reactants that combine to form an open-shell radical product, shown in Figure 8.  The initial structure of the 

open-shell reactant of this reaction was optimized using DFT with the B3LYP functional and the 6-31G(d) basis 

set.39c  This structure was then optimized with both HF and FMO3 at the ROHF/6-31G(d) level of theory, with 

the multiplicity of the system chosen as a doublet in both cases.  Single point MP2 energy calculations were 

then performed at the respective ROHF optimized geometry for each method.   
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The fragmentation scheme for the FMO calculations is illustrated in Figure 9, with the backbone 

chosen as one fragment, each phenyl group chosen as a fragment and the (CH3)2C(CN) moiety chosen as a 

fragment, for a total of four fragments.  The open-shell (doublet) fragment is shown in orange in Figure 9, with 

the open-shell carbon atom circled in black.   

An FMO2 optimization using the same fragmentation scheme as the FMO3 optimization was unable to 

converge to an equilibrium geometry.  The inability of FMO2 to converge to an equilibrium geometry, coupled 

with the results discussed for the (Ala)2Phe(Ala)2 chains in subsection 3.4 showing that the use of FMO3 

provides marked reductions in the structural RMSD compared to ab initio structures, further illustrates the 

importance of using FMO3 for optimizations of smaller open-shell systems composed of fewer than ~40-50 

heavy atoms.  However, larger systems can benefit from larger fragment choices, thereby improving the 

accuracy of the calculation and potentially facilitating the use of FMO2.   

The overall accuracy of the FMO3 optimization of (CH3)2C(CN)-CH2-CH(Ph)-CH2-C•H(Ph) is quite 

good, with an error in the total energy of the system of 0.05 kcal/mol compared to the full ab initio optimization.  

The MP2 single point energy calculation also shows good agreement with ab initio results, with a difference in 

energy of -0.53 kcal/mol.  The structure obtained from the FMO3 optimization is compared to the ab initio 

structure in Figure 10.  The RMSD value between these two structures is 0.172 Å. 

3.6 Adiabatic Excitation Energy Calculation of a Small Protein 

 To demonstrate the ability of the FMO-ROHF method to perform open-shell calculations on a large 

system, the adiabatic excitation energy of a small protein, chignolin (PDB ID: 1UAO), was calculated. The 

initial structure, obtained from the PDB database, was optimized with the 6-31G(d) basis set using FMO2-RHF 

and FMO2-ROHF, followed by FMO2-MP2 single point calculations for both the closed shell (singlet) and 

open-shell (triplet) states.  The fragmentation scheme chosen for the geometry optimizations, shown in Figure 

11, is two amino acid residues per fragment creating a total of 5 fragments.  The fragmentation scheme used for 

the open-shell calculations is the same, with the fragment having triplet multiplicity chosen to contain the 

tryptophan residue.  The calculated adiabatic excitation energy is 68.4 kcal/mol and 91.9 kcal/mol for HF and 

MP2 respectively (Table 12). 

 In order to provide some assessment of the accuracy of the FMO-ROHF method on a large system 

such as chignolin, full ab initio MP2 energy calculations were performed at the FMO2 optimized structures.  

The other systems investigated with the open-shell FMO method up to this point have been relatively small and 

in all cases the corresponding ab initio calculations have not been prohibitively expensive to perform.  This is 

not the case for chignolin, particularly for the MP2 single point calculation.  While the full geometry 

optimizations on this system were not possible, full MP2 single point energy calculations were performed.  The 

error between the FMO2 and ab initio energies is ~0.7 kcal/mol for the singlet and triplet HF optimized 
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structures while the error between ab initio and FMO2 for the MP2 energy calculations is -0.07 and -0.60 

kcal/mol for the singlet and triplet structures respectively.   

Both the FMO2 and ab initio singlet state MP2 energy calculations were performed on 10 nodes of a 

Cray XE6 computer with two 2.4 GHz AMD Opteron 64-bit 8-core processors and 32 GB of RAM per node.  

The FMO2 calculation took approximately 30 minutes while the full ab initio calculation took 181.5 minutes.  

However, the triplet state ab initio MP2 energy calculation requires significantly more memory, using 33 nodes 

on the same Cray XE6, or 528 cores and 1 TB of RAM.  The same FMO2-MP2 energy calculation on the triplet 

state was performed on only 10 nodes, requiring approximately 0.1 GB of RAM per node, or four orders of 

magnitude less memory.  Even with more than three times the number of nodes, the ab initio calculation took 

140.7 minutes on 33 nodes while the FMO2 calculation took only 47 minutes on 10 nodes.  It is important to 

note that the FMO2 calculation does not require such a large computer and could easily be performed on a 

much smaller computer system. 

4. Conclusions 

 The gradients for the open-shell FMO method have been derived and then implemented in the 

GAMESS program package and parallelized using the GDDI for the ROHF level of electronic structure theory.  

The ability of the FMO-ROHF method to reproduce accurate total energies and geometries for a variety of 

chemical systems with varying multiplicities was tested.  The accuracy of adiabatic excitation energies was also 

investigated and it was demonstrated that the open-shell FMO method is capable of producing both accurate 

geometries as well as adiabatic excitation energies within 0.01 to 0.85 kcal/mol of ab initio calculations.  

Timings and memory requirements for the relatively small test systems also show the ability of the open-shell 

FMO method to provide a route to geometry optimizations on larger systems.   

 This work contributes a scalable method for geometry optimizations on large chemical systems 

through the implementation of the gradient for the single-reference open-shell FMO method. Through the 

combination of reduced computational cost as well as chemical accuracy shown, the open-shell FMO method 

provides a means for accurate geometry optimizations on open-shell radical systems much larger than 

previously possible. 
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Figure 1. Ten isomers of OH(H2O)7 clusters used for testing. Open shell OH molecules are circled. The naming 
convention for the isomers is taken from reference 28. 
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Figure 2. Graph of the relative energies of the ten OH(H2O)7 clusters computed using ab initio ROHF, FMO2-

ROHF and FMO3-ROHF with the aug-cc-pVDZ basis set.   
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Figure 3. Graph of the relative energies of the ten OH(H2O)7 clusters computed using ab initio ROMP2, FMO2-

ROMP2 and FMO3-ROMP2 with the aug-cc-pVDZ basis set.   
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Figure 4. Graph of the relative energies of the ten OH(H2O)7 clusters computed using ab initio ROHF, FMO2-

ROHF and FMO3-ROHF with the aug-cc-pVTZ basis set.   
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Figure 5. Graph of the relative energies of the ten OH(H2O)7 clusters computed using ab initio ROMP2, FMO2-

ROMP2 and FMO3-ROMP2 with the aug-cc-pVTZ basis set.   
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Figure 6.  Fragmentation scheme used for open-shell solvated phenol calculations.  Highlighted molecules make 

up the triplet fragment during open-shell calculations, with each remaining water molecule assigned as a single 

fragment. 
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Figure 7.  Initial orientation of water molecules around phenol before EFP1/RHF optimization. 
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Figure 8.  Schematic representation of a RAFT reaction. 
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Figure 9.  Fragmentation scheme used for (CH3)2C(CN)-CH2-CH(Ph)-CH2-C•H(Ph).  The open-shell fragment 

is shown in orange. 

 



www.manaraa.com

 203 

Figure 10.  Overlay of FMO3 optimized (yellow) and ab initio optimized (blue) structures of (CH3)2C(CN)-

CH2-CH(Ph)-CH2-C•H(Ph). 
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Figure 11.  Fragmentation scheme used for chignolin (1UAO). 
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Table 1.  Fragmentation schemes used for ten OH(H2O)7 clusters. 

Number of fragments 
S4 8 
d2d 8 
Ci 8 
Cs 7 

C1c 7 
C1b 7 
C1a 7 
C2 5 
L2 8 
L1 5 
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Table 2. Errors of FMO-ROHF(MP2) energies relative to ab initio ROHF(MP2) energies using the aug-cc-

pVDZ basis set for ten OH(H2O)7 clusters. 

 absolute errors (kcal/mol) 
 aug-cc-pVDZ 

Isomer FMO2-ROHF FMO3-ROHF  FMO2-ROMP2 FMO3-ROMP2 
S4 6.54 0.43  5.47 1.15 
d2d 6.35 0.28  5.16 1.07 
Ci 10.22 0.88  9.33 1.87 
Cs 6.10 -0.28  5.47 0.12 

C1c 4.89 -1.08  4.30 -0.90 
C1b 4.41 -0.23  3.74 -0.03 
C1a 3.66 -0.33  2.97 -0.16 
C2 1.16 -0.03  0.47 -0.11 
L2 6.79 1.12  5.88 1.90 
L1 0.47 -0.09  0.10 -0.09 
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Table 3. Errors in the total energy between ab initio ROHF(MP2) and FMO-ROHF(MP2) using the aug-cc-

pVTZ basis set for ten OH(H2O)7 clusters. 

 errors in the total energy  (kcal/mol) 
 aug-cc-pVTZ 

Isomer FMO2-ROHF FMO3-ROHF  FMO2-ROMP2 FMO3-ROMP2 
S4 4.23 -0.06  3.71 0.30 
d2d 5.03 0.02  4.61 0.48 
Ci 7.49 -0.05  7.17 0.29 
Cs 4.18 -0.25  4.04 -0.19 

C1c 2.97 -0.89  2.71 -0.73 
C1b 2.45 0.35  2.11 0.54 
C1a 2.38 -0.17  2.06 -0.05 
C2 0.73 0.41  0.39 0.44 
L2 4.50 0.11  4.10 0.44 
L1 0.26 -0.09  0.10 -0.09 
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Table 4.  Comparison of the ROMP2 and FMO-ROMP2 relative energies of ten OH(H2O)7 clusters using the 

aug-cc-pVDZ and aug-cc-pVTZ basis sets. 

 relative energies (kcal/mol) 
 aug-cc-pVDZ aug-cc-pVTZ 

isomer FMO2-

ROMP2 

FMO3-ROMP2 ROMP2 FMO2-ROMP2 FMO3-ROMP2 ROMP2 
S4 0.00 0.00 0.00 0.00 0.00 0.00 
d2d -0.21 0.02 0.10 0.96 0.24 0.06 
Ci 6.78 3.64 2.92 6.36 2.90 2.91 
Cs 3.27 2.25 3.28 3.54 2.72 3.21 

C1c 2.46 2.29 3.63 2.55 3.10 3.54 
C1b 2.12 2.68 3.86 2.19 4.03 3.79 
C1a 1.70 2.89 4.21 0.81 4.27 4.14 
C2 -0.75 2.99 4.25 2.49 3.79 4.13 
L2 5.24 5.59 4.84 5.01 4.77 4.63 
L1 3.34 7.47 8.71 4.77 7.99 8.38 

 

 



www.manaraa.com

 209 

Table 5.  Timing comparison between ab initio and FMO single point energy calculations using the lowest 

energy OH(H2O)7 isomer (S4) at the MP2/aug-cc-pVTZ level of theory. 

 Wall Clock Time (minutes) Memory Requirements 
 4 nodes 6 nodes 8 nodes MB RAM/CPU 

ROMP2 42.2 31.8 26.6 200 
FMO2-ROMP2 3.7 3.1 2.3 9 
FMO3-ROMP2 43.1 30.4 25.8 16 
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Table 6.  FMO-ROHF/6-31G(d) analytic gradient (���hartree/bohr)�compared to ROHF/6-31G(d) fully 

analytic gradient at equilibrium geometries.   

 Fully Analytic FMO2 Error FMO3 Error 
 α-(Ala)2Phe(Ala)2 

Maximum Gradient 0.0000590 0.0000722 0.0000132 0.0000952 0.0000362 
RMS Gradient 0.0000166 0.0000250 0.0000084 0.0000237 0.0000071 

MAE   0.0000228  0.0000216 
 β-(Ala)2Phe(Ala)2 

Maximum Gradient 0.0000860 0.0000957 0.0000097 0.0000481 -0.0000379 
RMS Gradient 0.0000183 0.0000333 0.0000150 0.0000064 -0.0000119 

MAE   0.0000298  0.0000138 
 C6H5OH(H2O)8 

Maximum Gradient 0.0000727 0.0000538 -0.0000189 0.0000847 0.0000120 
RMS Gradient 0.0000251 0.0000174 -0.0000077 0.0000278 0.0000027 

MAE   0.0000218  0.0000259 
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Table 7.  FMO-ROHF/6-31G(d) analytic gradient (in hartree/bohr)�compared to ROHF/6-31G(d) fully analytic 

gradient at non-equilibrium geometries.   

 Fully Analytic FMO2 Error FMO3 Error 
 α-(Ala)2Phe(Ala)2 

Maximum Gradient 0.0092148 0.0096807 0.0004659 0.0093471 0.0001323 
RMS Gradient 0.0021575 0.0023306 0.0001731 0.0022209 0.0000634 

MAE   0.0003201  0.0000640 
 β-(Ala)2Phe(Ala)2 

Maximum Gradient 0.0079401 0.0068328 -0.0011073 0.0074678 -0.0004723 
RMS Gradient 0.0020780 0.0020709 -0.0000071 0.0011626 -0.0009154 

MAE   0.0007022  0.0013018 
 C6H5OH(H2O)8 

Maximum Gradient 0.0070689 0.0072404 0.0001715 0.0069375 -0.0001314 
RMS Gradient 0.0017368 0.0017288 -0.0000080 0.0017197 -0.0000171 

MAE   0.0001502  0.0000337 
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Table 8.  Total energy deviations calculated between FMO-ROHF and ab initio ROHF optimized geometries 

for C6H5OH(H2O)8. 

 absolute errors (kcal/mol) 
 HF  MP2  
 FMO2 FMO3  FMO2 FMO3  

Singlet -0.23 0.07  0.69 0.13  
Triplet -0.48 0.08  0.01 0.19  

Excitation -0.25 0.01  -0.70 0.06  
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Table 9.  Root mean squared deviations (RSMD) between fully ab initio optimized structures and FMO 

optimized structures of C6H5OH(H2O)8. 

 RMSD (Å) 
 6-31G(d)  
 FMO2 FMO3  

Singlet 0.038 0.013  

Triplet 0.254 0.006  
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Table 10.  Errors in isomer and adiabatic excitation energies for FMO-ROHF geometry optimizations and MP2 

single point energy calculations relative to full ab initio optimized alpha and beta isomers of (Ala)2Phe(Ala)2. 

 absolute errors (kcal/mol) 
 HF  MP2 
 FMO2 FMO3  FMO2 FMO3 

α-(Ala)2Phe(Ala)2      
Singlet -1.04 0.01  0.64 -0.09 
Triplet -1.89 -0.62  0.17 -0.32 

Excitation -0.85 0.61  -0.47 -0.23 
      

β-(Ala)2Phe(Ala)2      
Singlet -0.47 0.02  -1.48 -0.04 
Triplet -0.97 -0.49  -2.59 -0.68 

Excitation -0.49 -0.47  -1.11 -0.64 
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Table 11.  Root mean squared deviations (RSMD) between ab initio optimized structures and FMO optimized 

structures of alpha and beta isomers of (Ala)2Phe(Ala)2. 

 RMSD (Å) 
 FMO2 FMO3   

α-(Ala)2Phe(Ala)2    

Singlet 0.177 0.026  
Triplet 0.210 0.254  

β-(Ala)2Phe(Ala)2    
Singlet 0.484 0.019  
Triplet 0.563 0.176  
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Table 12. Adiabatic FMO2 excitation energy of the small protein chignolin (1UAO) compared to ab initio 

energy values calculated at the FMO2 optimized structure. 

 6-31G(d) 
 FMO2-HF Error (kcal/mol) FMO2-MP2 Error (kcal/mol) 

Singlet -3799.987012704 -0.71 -3811.124860473 -0.07 
Triplet -3799.878011966 -0.70 -3810.978345282 -0.60 

Excitation 68.40 0.02 91.94 -0.53 
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Chapter 6. Extension of the Effective Fragment Molecular Orbital Method 

A paper to be submitted to The Journal of Chemical Theory and Computation 

Spencer R. Pruitt, Casper Steinmann, Jan H. Jensen, Mark S. Gordon 

Abstract 

In this work, the effective fragment molecular orbital (EFMO) method is extended to include all relevant 

intermolecular interactions currently accounted for in the effective fragment potential (EFP) method.  The 

accuracy of the method is tested and compared to both the standard fragment molecular orbital (FMO) method 

as well as fully ab initio methods.  It is shown that the extended EFMO method provides significant reductions 

in error while at the same time reducing the computational cost associated with standard FMO calculations by 

up to 93%. 

1. Introduction 

  Modern computational chemistry methods strive to accurately model chemical systems using efficient 

computational algorithms.  Unfortunately, it is difficult to reconcile both of these goals, since most methods that 

are widely viewed as the most accurate1 also require the most computational effort.  The most effective 

compromise reached so far has been through the application of fragmentation approaches to these 

computationally intensive methods.  Many such fragmentation methods have been introduced in recent years2-8, 

with many showing the ability to accurately model large molecular systems.  Methods such as the systematic 

molecular fragmentation (SMF) method9-11, molecular fractionation with conjugate caps (MFCC)12, the 

molecular tailoring approach (MTA)13 and the explicit polarization potential (X-Pol)14,15 have all shown a 

variety of successes in describing different chemical systems.  

 One such method, the fragment molecular orbital (FMO) method16, has been extensively developed17 

since the original implementation by Kitaura et al.  Based upon a many-body expansion of the energy, the FMO 

method takes the effects of the entire system into account during each step of a given calculation through the 

use of an electrostatic potential (ESP).  The FMO method, as well as other fragmentation methods18, also 

benefit from the relative ease with which calculations can be parallelized on modern computer hardware.  This 

inherent parallelizability aids in lowering the computational cost of the most accurate ab initio methods.   

 While not a fragmentation method in the same vein as the FMO method, the effective fragment 

potential (EFP) method19-21 was originally developed to accurately introduce solvent effects into chemical 

processes without the use of any fitted parameters.  The importance of modeling chemistry in solution is 

apparent in many applications22-32, making the EFP method an attractive solution to the study of solvent effects 

and intermolecular interactions.  Recently, the generalized EFP method33,34 (EFP2) has been developed as an ab 

initio based method for capturing all intermolecular interactions including, but not limited to, solvent effects. As 
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implemented in the General Atomic and Molecular Electronic Structure System (GAMESS) program 

package,35,36 the EFP2 method requires a preliminary calculation to generate the potential for each fragment. 

The generated potentials are then incorporated into a production calculation on the chemical system of interest.  

Since the EFP method is essentially a classical model, it can only provide intermolecular interactions. Bond 

breaking/bond making processes must be described by quantum mechanics. EFP fragments have internally 

frozen geometries.   

 In an effort to combine the accuracy of the FMO method with the speed of the EFP method, Steinmann 

et al. recently developed a combined method called the effective fragment molecular orbital (EFMO) 

method37,38.  The EFMO method uses the fragmentation scheme from the FMO method and treats the separated 

fragment interactions using the Coulomb interaction of the EFP method.  Additionally, the ESP used during 

standard FMO calculations is replaced with the many-body polarization of the EFP method. Other 

intermolecular interactions such as exchange repulsion, charge transfer and dispersion that are present in the 

EFP method are not included in the original EFMO method.  The EFMO method also incorporates the 

intramolecular energy of each fragment, and it removes the restriction of frozen internal EFP geometries.    

  Although the EFMO method has many benefits, the inclusion of only the EFP polarization and 

Coulomb interactions essentially limits the applicability of the method to Hartree Fock (HF) or density 

functional theory (DFT) calculations. The present work extends the EFMO method to include all relevant 

intermolecular interactions (Coulomb, polarization, exchange repulsion, charge transfer and dispersion) to 

enable the use of correlated ab initio methods. By including all fundamental types of intermolecular interactions, 

this extension of the EFMO method can also reduce the total number of explicit quantum mechanics (QM) 

calculations required, providing a significant reduction in computational cost. An additional benefit of this 

extension is the detailed analysis of the individual contributions to the total interaction energy, or energy 

decomposition analysis39,40 (EDA), between two fragments provided by the EFP method.  A dimer EDA can 

provide insights into the most important intermolecular interactions in a given chemical system. 

 The first section of this paper introduces the theoretical background of the FMO, EFP and extended 

EFMO methods.  Next, the newly extended EFMO method is tested on water clusters of varying size, 

comparing the energies to those from the FMO method and to fully ab initio energies.  Timings are then 

presented that compare the extended EFMO, FMO and ab initio methods, followed by conclusions and future 

directions.  

2. Methodology 

2.1 The Fragment Molecular Orbital Method 

 The FMO method is based on a many-body expansion of the total energy, truncated at three-body 

interactions: 
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E = EI +
I
∑ (EIJ −EI −EJ )+

I>J
∑

{(EIJK −EI −EJ −EK )− (EIJ −EI −EJ )− (EIK −EI −EK )− (EJK −EJ −EK )}∑
  (1) 

Each energy in Eq. (1) is calculated using quantum mechanical (QM) methods.  Eq. (1) includes energies for 

individual fragments I (monomers), fragment pairs IJ (dimers) and fragment triples IJK (trimers). The first two 

terms in Eq. (1) omit explicit trimer calculations and comprise the FMO2 method. The FMO341 method 

includes the third (trimer) term. The FMO2 and FMO3 energy expressions can be written as:   

EFMO2 = EI +
I
∑ (EIJ −EI −EJ )

I>J
∑         (2) 

EFMO3 = EFMO2 +

{(EIJK −EI −EJ −EK )− (EIJ −EI −EJ )− (EIK −EI −EK )− (EJK −EJ −EK )}
I>J>K
∑   (3) 

Each energy in Eqs. (2) and (3) can be calculated in one of two ways: as isolated n-mers with energy Ex
0 , or in 

the presence of the rest of the fragments with energy Ex  (x = I, J, K, IJ, IK, JK, IJK).  The standard FMO 

method calculates the energies Ex  by incorporating an electrostatic potential (ESP) derived from the densities 

of all other fragments16.  The ESP has the form 

Vµν
x = (µµν

K +νµν
K )

K≠x
∑           (4) 

µµν
K = µ

A∈K
∑ (−ZA / r - rA ) ν          (5) 

νµν
K = Dλσ

K (µν | λσ )
λσ ∈K
∑          (6) 

where µµν
K  represents the nuclear attraction contribution to the energy and νµν

K

 
represents the two-electron 

contribution. Both of these terms are expressed in terms of one- (Eq. (5)) and two- (Eq. (6)) electron integrals 

over AOs µ  and ν  and are calculated for each of the surrounding monomers K with electron density DK.   

 While the formalism up to this point provides a means to obtain accurate energies, efficient algorithms 

must be used in order to take advantage of modern computer hardware.  The FMO implementation in GAMESS 

makes use of the generalized distributed data interface42 (GDDI) to accomplish this goal. One performs each n-

mer calculation on a separate computer node (coarse grained parallel); the availability of multiple cores within 
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each node facilitates the fine-grained parallel calculation for each fragment.  The two-level parallelism 

described here allows the FMO method to take advantage of massively parallel computers.   

 Despite the computational savings that can be achieved through the use of the GDDI, the rapid 

increase in the number of dimer and trimer calculations with system size for large molecular systems still 

requires an increasingly significant computational effort.  The number of n-mer calculations performed can be 

partially reduced by employing approximations for the interaction energies of n-mers that are farther apart than 

a unitless, predefined cut-off value Rcut.  The unitless distance between two fragments, RI,J, is given by  

 
RI ,J = min

i∈I , j∈J

ri −
rj

ri
vdw + rj

vdw

#
$
%

&%

'
(
%

)%
         (7) 

where RI,J is the relative minimum interatomic distance between fragment I and fragment J based on the van der 

Waals radii rvdw of the atoms i and j.  Through a reformulation of Eq. (2), EFMO2 can be expressed as  

EFMO2 = EI + ΔEIJ
I >J

RI ,J ≤Rcut

∑ + ΔEIJ
sep

I >J

RI ,J >Rcut

∑
I
∑        (8) 

where 

ΔEIJ = (EIJ −EI −EJ )           (9) 

with a corresponding expression41 for EFMO3. The total number of QM dimers (term 2) in Eq. (8) can now be 

varied based on the user-defined value of Rcut (default value = 2.0).  The remaining dimers (last term in Eq. (8)) 

are now approximated by 

ΔEIJ
sep ≅ EI + EJ + Tr(DIu1, I (J ) ) + Tr(DJu1,J ( I ) ) + DµνDλσ (µν | λσ ) +

λσ∈J
∑

µν∈I
∑ ΔEIJ

NR             (10) 

where u1,I(J) and u1,J(I) are the one-electron Coulomb potentials of the force exerted by fragment I (J) on 

fragment J (I).  The electron-electron interaction (5th term in Eq. (10)) and the nuclear repulsion energy, ΔEIJ
NR , 

are also included. The standard SCF procedure is not employed during separated dimer calculations, resulting in 

significant time savings compared to QM dimer calculations.  

2.2 The Effective Fragment Potential Method 

 An extension of the original EFP1 method19-21 to the generalized EFP2 method33-34 facilitates the 

inclusion of solvent effects and the evaluation of intermolecular interactions for any molecular species.  The 

EFP2 intermolecular energy is composed of five terms: 
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EEFP2 = ECoul + E pol + Edisp + Eexrep + Ect                  (11) 

The first two interactions, ECoul and Epol, are identical to the same terms in EFP1. ECoul is based on a distributed 

multipole analysis at atom centers and bond midpoints43,44, truncated at the octopole term.  The polarization 

energy, Epol, arises from the interaction of induced and permanent dipoles between fragments.  The polarization 

energy is iterated to self-consistency, enabling the EFP method to capture some of the many-body effects 

present in chemical systems.  The third term in Eq. (11), Edisp, is expressed using an inverse R expansion45: 

Edisp = CnR
−n

n
∑                     (12) 

In the EFP method, this expansion is truncated at the leading induced dipole-induced dipole R-6 term.  The 

contribution of the R-8 term is estimated as one-third of the R-6 term45.  The coefficients Cn are derived from 

imaginary frequency-dependent polarizabilities integrated over the entire frequency range.  In particular, the C6 

coefficients are derived in terms of the interactions between pairs of localized molecular orbitals (LMOs), one 

on each molecular species.   

 The last two terms in Eq. (11), Eexrep and Ect, are based on approximate energy expressions that depend 

on the intermolecular overlap of molecular orbitals.  Since the EFP method uses frozen LMOs, the overlap 

expansion used for Eexrep can be reliably truncated at the quadratic term46-47.  The calculation of Eexrep requires 

each generated potential to carry a basis set, making the EFP method basis set dependent.  The charge transfer 

energy48-49, Ect, between two fragments is calculated by considering the interaction between the occupied 

orbitals of one fragment and the virtual orbitals of a second fragment. The approximate formula used to 

calculate Ect is based on a second-order perturbative treatment of the intermolecular interactions.  This formula 

is expressed in terms of canonical HF orbitals for a pair of fragments, using a truncated multipolar expansion 

(through quadrupoles) to represent the molecular electrostatic potential.  The addition of Ect to the total energy 

results in a significant lowering of the energy for ionic and highly polar species. 

 The first three terms in Eq. (11) can fail at short inter-molecular distances.  For example, the Coulomb 

interaction becomes repulsive at short distances and the polarization interaction becomes too attractive.  The 

failures that occur at small distances can be mitigated through the addition of damping functions.50 For the 

Coulomb term, an exponential damping function is used51,52: 

fdamp =1− exp(−αR)                     (13) 

The parameter α  is obtained through the fitting of the damped multipole potential to the Hartree-Fock potential. 

An alternate approach to damping the short-range Coulomb interactions is through an approximation of the 

short-range charge penetration energy based on the intermolecular overlap52,53. The polarization term can be 

damped using either an exponential term as in Eq. (13) or Gaussian damping.  The dispersion term can be 
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damped using the Tang-Toennies45,54 formula, or through the use of a damping formula based on the 

intermolecular overlap52. The latter is preferable since the intermolecular overlap is already calculated for the 

exchange repulsion and since no arbitrarily fitted parameter is required.  

2.3 The Effective Fragment Molecular Orbital Method 

 The EFMO method was developed to integrate the FMO and EFP methods in an effort to provide a 

generally applicable, accurate and efficient approach to large molecular systems.  The original EFMO energy37 

is given by 

EEFMO = EI
0 + (ΔEIJ

0 − EIJ
pol )

I >J

RI ,J ≤Rcut

∑ + EIJ
Coul

I >J

RI ,J >Rcut

∑ + Etot
pol

I
∑                (14) 

where the standard fragment energies in the FMO method (which include the ESP of each other fragment) are 

replaced with the isolated energies described previously.  The use of isolated fragment energies eliminates the 

need to calculate the ESP used in standard FMO method calculations.  The many-body interaction energy 

formerly computed using the ESP is replaced by the total EFP polarization energy Etot
pol .  Each fragment pair 

polarization energy, EIJ
pol , is subtracted from the corresponding dimer energy EIJ , since each EIJ

pol  is already 

contained in Etot
pol .  The separated dimer energies (ΔEIJ

sep ) in Eq. (8) are replaced by the EFP Coulomb 

energies EIJ
Coul . 

 The original formulation of the total EFMO energy is extended in this work to include all five 

components of the EFP energy as described in Section 2.2.  The expression for the extended EFMO energy is: 

EEFMO = EI
0 + (ΔEIJ

0 − EIJ
pol )

I >J

RI ,J ≤Rcut

∑ + (EIJ
Coul + EIJ

disp

I >J

RI ,J >Rcut

∑ + EIJ
exrep + EIJ

ct ) + Etot
pol

I
∑             (15) 

Including the dispersion energy in the separated dimer energies allows the EFMO method to be used with 

correlated ab initio methods such as second order Møller-Plesset perturbation theory (MP2) and coupled cluster 

theory (CC).  Additionally, by including all intermolecular interactions, the user defined cut-off value Rcut can 

be reduced to neglect additional QM dimers.  The reduction in QM dimers lowers the computational 

requirements of EFMO calculations relative to standard FMO method calculations.  

 The extended EFMO method has been implemented in a modified version of the GAMESS program 

package.  All of the default screening parameters for the EFP method were used with the exception of the 

Coulomb energy, for which the overlap based damping52,53 is used.  

 



www.manaraa.com

 223 

3. Results 

 Clusters of water molecules, shown in Figures 1 through 4, were used as test systems to assess the 

accuracy of the extended EFMO method versus both FMO2 and fully ab initio methods. Seven minimum 

energy structures for clusters of both 8 and 16 water molecules were chosen from previous work55.  Larger 

clusters of 32 and 64 water molecules were obtained using a Monte Carlo algorithm with simulated annealing 

(MC/SA)55,56.  The starting temperature for the SA was set to 20,000 K and then lowered to 300 K.  Every 100 

steps a local minimization was performed, with the number of molecules moved per step varied from one to 

four.  Approximately 16,000 geometries were sampled for both 32 and 64 water molecules.  Seven unique 

isomers were chosen and re-optimized using the EFP1 method20.  Fully ab initio energies for each of the 8, 16, 

32 and 64 water clusters were calculated at the MP2 level of theory using two Pople-type basis sets57 (6-

31++G(d,p) and 6-311++G(3df,2p)).  Due to computational limitations, the MP2 energies of the 64 water 

clusters were evaluated using only the 6-31++G(d,p) basis set.   

 Table 1 shows the various Rcut values tested and the average number of separated and QM dimer 

calculations performed for each cut-off value and cluster size. Recall that the smaller the value of Rcut, the fewer 

is the number of dimers that are calculated using a fully QM level of theory. For example, if Rcut = 0.6, no 

dimers are calculated with the QM level of theory for all of the water cluster sizes considered, so there are only 

separated dimer interactions for both the extended EFMO and FMO2 methods. The largest value of Rcut in 

Table 1 (2.0, the default value in GAMESS) results in the QM calculation of many more dimers, as many as 

598 for the 64-water clusters.   

3.1 Average signed errors  

 The total cluster energies produced by the extended EFMO method are compared with FMO2 and 

MP2 energies in Table 2.  The average signed errors in Table 2 are calculated as 

Error =
(Ei

X − Ei
MP2 )

i=1

n

∑
n

                   (15) 

where n is the number of isomers and Ei
X is either the EFMO or FMO2 energy.   

 For the 6-31++G(d,p) basis set and Rcut = 0.6, the extended EFMO method produces consistently 

smaller errors than does FMO2.  The EFMO errors average 18.6 kcal/mol for clusters of 8 water molecules and 

262.2 kcal/mol for clusters of 64 water molecules.  Average FMO2 errors are significantly larger, with an 

average error of -104.1 kcal/mol for clusters of 8 water molecules and -1348.2 kcal/mol for clusters of 64 water 

molecules.  Increasing Rcut to 0.8 provides a sharp decrease in the average FMO2 errors for all cluster sizes, 

with errors between -7.2 and -72.2 kcal/mol.  The corresponding errors for the extended EFMO method 
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decrease as well, falling in between -5.7 and -44.6 kcal/mol for all cluster sizes.  The inclusion of additional 

QM dimers by increasing Rcut to 1.4 and then 2.0 shows a steady increase in average error for both the extended 

EFMO and FMO2 methods.  Despite this increase in average error, the extended EFMO method produces 

smaller errors than the FMO2 method for all cluster sizes and values of Rcut. 

 Errors obtained using the larger 6-311++G(3df,2p) basis set and Rcut = 0.6 follow the same trend of 

increasing with cluster size reported above for the smaller basis set.  In general, average FMO2 errors increase 

for all cluster sizes compared to those obtained using the smaller basis set.  However, the average EFMO errors 

drop substantially for all clusters sizes when the larger basis set is used. For example, the average EFMO error 

for the 8-water clusters with Rcut = 0.6 is 2.3 kcal/mol for the larger basis set vs. 8.6 kcal/mol for the smaller 

basis set. The analogous comparison for the 32-water clusters is 16.2 kcal/mol vs. 122.3 kcal/mol. This 

significant reduction in the extend EFMO method errors is due to the use of a better EFP potential generated 

with the larger basis set.  Increasing the number of QM dimers causes an increase in error for both FMO2 and 

EFMO.  However, the errors produced by the extended EFMO method converge more quickly for each cluster 

size.  For example, with Rcut = 0.8, 1.4 and 2.0 the extended EFMO method produces errors of -8.5, -9.4 and -

9.6 kcal/mol for the smallest clusters of 8 water molecules.  The corresponding FMO2 errors are -8.5, -20.8 and 

-22.9 kcal/mol.  This behavior is consistent for all cluster sizes, with the extended EFMO method errors 

differing by less than 8.6 kcal/mol when Rcut is increased from 0.8 to 2.0.    

3.2 Relative Energies  

 Seven different isomers were chosen for each cluster size to test the ability of both the extended EFMO 

and FMO2 methods to reproduce relative energies compared to MP2 results.  The same set of Rcut values (0.6, 

0.8, 1.4 and 2.0) that were discussed in Section 3.1 are used.  

 Figure 5 shows the relative energies for isomers of eight water molecules for EFMO, FMO2 and MP2.  

Graphs a through d present results for Rcut values of 0.6, 0.8, 1.4 and 2.0, respectively, for the 6-31++G(d,p) 

basis set.  Graphs e through f present the corresponding data for the 6-311++G(3df,2p) basis set.  For clusters of 

8 water molecules, the EFMO method provides more accurate relative energies than does the FMO2 method.  

As noted above for the average signed errors, the best EFMO results are produced using Rcut = 0.6.  The quality 

of the EFMO relative energies does not change appreciably with an increase in basis set size.   

 Relative energies for the 16-water isomers are shown in Figure 6, following the same scheme as in 

Figure 5.  Results for both FMO2 and EFMO using the smaller basis set are not as accurate as the results for the 

8-water isomers.  The most accurate results are now produced using Rcut = 1.4 for EFMO, while the most 

accurate FMO2 results are produced when using Rcut = 2.0.  The accuracy for both EFMO and FMO2 when 

using the larger basis set are relatively poor.  The inability of either method to accurately produce the relative 

energies of the 16 water molecule clusters may be due to the stacking of dipole moments in these highly 



www.manaraa.com

 225 

structured clusters.  The stacked dipoles can create much larger dipole moments than either the smaller, 

similarly structured 8-water clusters or the more globular arrangements of the larger 32 and 64 water clusters.   

 When the size of the clusters is increased to 32 water molecules, there are no highly structured 

isomers; globular droplets are more prevalent.  Figure 7 shows that for both the smaller and larger basis sets, the 

extended EFMO method consistently produces extremely accurate relative energies, in some cases (Figures 7b-

e) nearly overlaying the MP2 curve exactly.  The relative energies produced by the FMO2 method are not 

dissimilar to the MP2 results, however the two lowest energy structures are found to be farther apart in energy 

than the relative energies obtained by the extended EFMO method or MP2.  Consequently, the FMO2 relative 

energy curve is shifted up, in all cases predicting the highest energy isomer to be greater than 10 kcal/mol 

higher than predicted by either EFMO or MP2; the largest difference in Figure 7e is ~45 kcal/mol.   

 The relative energies of the 64-water clusters using only the smaller 6-31++G(d,p) basis set are shown 

in Figure 8.  For Rcut = 0.6, the extended EFMO method does not reproduce the relative energies correctly.  

However, the EFMO relative energies are an improvement over the FMO2 relative energies.  Adding nearest 

neighbor QM dimers improves both the EFMO and FMO2 results, however inclusion of additional QM dimers 

(Rcut = 1.4) provides the best EFMO results.  For all Rcut values used, FMO2 fails to give even reasonably 

accurate relative energies.  

3.3 Average Binding Energy per Water Molecule 

 As a final test of the extended EFMO method, the average binding energy per molecule was calculated 

for all clusters and basis sets for both the extended EFMO method and the FMO2 method and compared to the 

MP2 results in Table 3.  Each water molecule has the same internal geometry.  The total binding energy of each 

cluster can be easily evaluated by subtracting the gas phase monomer energy, multiplied by the appropriate 

number of monomers, from the total energy.  

 The extended EFMO method outperforms the FMO2 method for all clusters and basis sets investigated.  

The FMO2 error compared to MP2 for the smallest basis set are in the range 4-20 kcal/mol, while the 

corresponding EFMO binding energies are in error by only 1-3 kcal/mol.  For the larger basis set, the extended 

EFMO method produces even more accurate binding energies, with errors between 0.5 and 2 kcal/mol.  The 

FMO2 errors do not change appreciably: they are still in the range of 2 - 20 kcal/mol.  The most accurate FMO2 

binding energies are in error by 1.9-2.1 kcal/mol compared to MP2 for Rcut = 0.8.  In comparison, the most 

accurate EFMO binding energies are in error by only 0.3 kcal/mol for Rcut = 0.6; the largest EFMO error of 2.5 

kcal/mol is comparable in magnitude to the most accurate FMO2 binding energy.  It is especially noteworthy 

that the largest difference in predicted binding energies between FMO2 and EFMO occurs consistently for Rcut 

= 0.6. This means that many fewer fully MP2 calculations are required if one uses the extended EFMO method 

that is presented here.  
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3.4 Timings 

 Timing comparisons are presented in Table 4 for the extended EFMO, FMO2 and MP2 methods, using 

the 6-311++G(3df,2p) basis set on a single 2.66 GHz Intel Xeon processing core for one isomer each of 8 and 

32 water molecules. Due to computational requirements, MP2 timings are only shown for the cluster of 8-water 

molecules. Timings are compared for Rcut values that produced the best average errors for both the extended 

EFMO method (Rcut = 0.6) and FMO2 method (Rcut = 0.8).   

 For the smallest water cluster and Rcut = 0.6, the FMO2 method produces a wall clock time of ~353 

seconds with an error of -104.5 kcal/mol, compared to an MP2 wall clock time of ~4348 seconds.  The 

corresponding extended EFMO method calculation takes only ~61 seconds, but with a much smaller error of 2.9 

kcal/mol. With Rcut = 0.8 for the 8-water cluster, the errors for FMO2 and EFMO are similar at -7.6 and -7.9 

kcal/mol respectively, however the extended EFMO method is approximately 170 seconds faster than the 

FMO2 method.  The difference in wall clock times between the extended EFMO and FMO2 methods increases 

for the cluster of 32 water molecules.  Using Rcut = 0.6, the EFMO energy calculation takes ~147 seconds 

compared to ~2390 seconds for the FMO2 calculation, roughly 16 times faster.  Increasing Rcut to 0.8 reduces 

the EFMO speed-up to approximately 3 times faster compared to the FMO2 calculation, with wall clock times 

of 2203 and 6969 seconds respectively.  For both cluster sizes, the extended EFMO method provides reductions 

in wall clock times between 25 and 93% compared to the FMO2 method while producing superior results. 

4. Conclusions 

 Through this work, the EFMO method has been extended to include all five intermolecular interactions 

present in the EFP method.  The inclusion of short-range intermolecular interactions allows the extended EFMO 

method to be used with correlated ab initio methods such as MP2 and CC.  The accuracy of the extended 

EFMO method was tested versus the standard FMO2 method and MP2.  The extended EFMO method was 

shown to provide superior average errors, relative energies and binding energies for all cluster sizes and basis 

sets compared to the FMO2 method.  Significant reductions in wall clock times compared to the FMO2 method 

were also shown.  Through the reduction of the number of explicit QM dimers performed during extended 

EFMO method calculations, time savings of up to 93% compared to the FMO2 method were achieved while at 

the same time providing a more accurate estimate of the MP2 energies.  

 Future work on the extended EFMO method will include the implementation of gradients for the newly 

added energy terms in order to enable geometry optimizations.  With the addition of energy gradients, as well as 

the improved accuracy and reduction in computational requirements versus the FMO2 method, the extended 

EFMO method could provide a computationally feasible algorithm for dynamical simulations. 
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Table 1. Average total number separated and QM dimers for all cluster sizes and values of Rcut.a 

 8 waters 16 waters 32 waters 64 waters 
Rcut separated QM separated QM separated QM separated QM 
0.6 28 0 120 0 496 0 2016 0 
0.8 16 12 93 27 444 52 1904 112 
1.4 5 23 65 55 363 133 1730 286 
2.0 0 28 30 90 237 259 1418 598 

a “separated” indicates the number of dimers calculated with approximations. QM indicates the number of 

dimers calculated using quantum mechanics.  
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Table 2. Average signed errors (kcal/mol) relative to ab initio energies for the EFMO and FMO2 methods for 

each cluster size and Rcut value.  

 6-31++G(d,p)   6-311++G(3df,2p) 
Rcut FMO2 EFMO   FMO2 EFMO 

 8 water molecules 
0.6 -104.1 18.6  -104.4 2.3 
0.8 -7.2 -5.7  -8.5 -8.5 
1.4 -12.5 -8.4  -20.8 -9.4 
2.0 -14.1 -8.8  -22.9 -9.6 

 16 water molecules 
0.6 -310.7 48.1  -312.7 7.9 
0.8 -23.2 -17.2  -30.1 -27.3 
1.4 -38.9 -24.4  -70.7 -30.4 
2.0 -48.2 -27.1  -85.5 -31.3 

 32 water molecules 
0.6 -642.2 122.3  -654.2 16.2 
0.8 -40.3 -25.6  -61.0 -57.0 
1.4 -79.9 -45.8  -153.3 -64.2 
2.0 -111.9 -53.9  -204.5 -65.6 

 64 water molecules 
0.6 -1348.2 262.2  - - 
0.8 -72.2 -44.6  - - 
1.4 -155.7 -88.6  - - 
2.0 -238.0 -109.8   - - 
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Table 3. Binding energy per water molecule for FMO2, EFMO and MP2 (kcal/mol). 

 

 6-31++G(d,p)   6-311++G(3df,2p) 
Rcut FMO2 EFMO MP2   FMO2 EFMO MP2 

! 8 water molecules 
0.6 -23.7 -8.4 -10.7 ! -22.3 -9.0 -9.3 
0.8 -11.6 -11.4 -10.7 ! -10.3 -10.3 -9.3 
1.4 -12.3 -11.7 -10.7 ! -11.9 -10.4 -9.3 
2.0 -12.4 -11.8 -10.7 ! -12.1 -10.5 -9.3 

 16 water molecules 
0.6 -29.8 -7.4 -10.4  -28.6 -8.5 -9.0 
0.8 -11.8 -11.5 -10.4  -10.9 -10.7 -9.0 
1.4 -12.8 -11.9 -10.4  -13.4 -10.9 -9.0 
2.0 -13.4 -12.1 -10.4  -14.4 -11.0 -9.0 

 32 water molecules 
0.6 -30.9 -7.0 -10.8  -29.7 -8.8 -9.3 
0.8 -12.1 -11.6 -10.8  -11.2 -11.1 -9.3 
1.4 -13.3 -12.2 -10.8  -14.1 -11.3 -9.3 
2.0 -14.3 -12.5 -10.8  -15.7 -11.3 -9.3 

 64 water molecules 
0.6 -32.5 -7.4 -11.5  - - - 
0.8 -12.6 -12.2 -11.5  - - - 
1.4 -13.9 -12.8 -11.5  - - - 
2.0 -15.2 -13.2 -11.5   - - - 
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Table 4. Timing comparisona,b for EFMO, FMO2 and fully MP2 energy calculations.   

 6-311++(3df,2p) 
 EFMO  FMO2  MP2 

Rcut Wall Time Error   Wall Time Error   Wall Time 
 8 waters 

0.6 61 2.9  353 -104.5  4348 
0.8 515 -7.9  686 -7.6  - 

 32 waters 
0.6 147 16.7  2390 -668.5  - 
0.8 2203 -57.4   6969 -64.1   - 

a All timings performed on a single CPU core. 
b Times in are in seconds and errors are in kcal/mol. 
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Figure 1. Structures of all 8-water clusters. 

  



www.manaraa.com

 235 

Figure 2. Structures of all 16-water clusters. 
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Figure 3. Structures of all 32-water clusters. 
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Figure 4. Structures of all 64-water clusters. 
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Figure 5. Comparison of relative energies for FMO2, EFMO and fully MP2 for clusters of 8 water molecules.  

Graphs a-d show relative energies for the 6-31++G(d,p) basis set using Rcut values of 0.6, 0.8, 1.4 and 2.0 

respectively.  Graphs e-h correspond to the 6-311++G(3df,2p) basis set results.  Isomers are represented on the 

abscissa of each graph and all energies represented on the ordinate are in kcal/mol. 
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Figure 6. Comparison of relative energies for FMO2, EFMO and fully MP2 for clusters of 16 water molecules.  

Graphs a-d show relative energies for the 6-31++G(d,p) basis set using Rcut values of 0.6, 0.8, 1.4 and 2.0 

respectively.  Graphs e-h correspond to the 6-311++G(3df,2p) basis set results.  Isomers are represented on the 

abscissa of each graph and all energies represented on the ordinate are in kcal/mol. 
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Figure 7. Comparison of relative energies for FMO2, EFMO and fully MP2 for clusters of 32 water molecules.  

Graphs a-d show relative energies for the 6-31++G(d,p) basis set using Rcut values of 0.6, 0.8, 1.4 and 2.0 

respectively.  Graphs e-h correspond to the 6-311++G(3df,2p) basis set results.  In graphs a, e, g and h the 

FMO2 energy scale is shown on the right ordinate while the energy scale for MP2 and EFMO results is shown 

on the left ordinate.  Isomers are represented on the abscissa of each graph and all energies are in kcal/mol. 
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Figure 8. Comparison of relative energies for FMO2, EFMO and fully MP2 for clusters of 64 water molecules.  

Graphs a-d show relative energies for the 6-31++G(d,p) basis set using Rcut values of 0.6, 0.8, 1.4 and 2.0 

respectively.  In graph a the FMO2 energy scale is shown on the right ordinate while the energy scale for MP2 

and EFMO results is shown on the left ordinate.  Isomers are represented on the abscissa of each graph and all 

energies are in kcal/mol. 
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Chapter 7. Conclusions 

  It has been shown in this thesis that the FMO and SMFA methods both accurately estimate the MP2 

energies of water clusters. In contrast, the pair-wise interaction model provides a very poor estimate of binding 

in water clusters.  On average the mean errors of the FMO methods are remarkably close to the corresponding 

mean errors for SMFA methods. However, the FMO method tends to give systematic, rather than random, 

deviations from the exact cluster energies. This means that if isomerization energies are important for the 

physical measurement of interest, then the FMO method would be more reliable than the SMFA method. 

 The computational effort required for the SMFA method increases nearly linearly with the cluster size, 

since the number of sub-clusters increases approximately linearly with the size of the whole cluster. Level 2 

fragmentation typically results in sub-clusters of five (and less) water monomers, while Level 3 typically results 

in sub-clusters of eight to nine (and less) water monomers. Moreover, Level 3 fragmentation typically produces 

a much greater number of fragments. Hence, Level 3 SMFA is significantly more computationally expensive 

than Level 2. Level 2 SMFA produces an average error of about 0.15 kcal/mol per water monomer (about 1.3% 

of the total), which would appear to be sufficiently accurate for many applications. It is important to note that 

non-bonded dispersion must be accounted for if Level 2 fragmentation is used. 

The computational effort for FMO also increases nearly linearly for FMO2, while the computational 

effort of FMO3 increases by a factor of  ~4.8.  This deviation from nearly linear scaling is due to the quickly 

increasing number of three body interactions that are required with increasing cluster size.  Despite this increase 

in three body calculations required, the time savings obtained from FMO3 when compared to ab initio 

calculations also increases with increasing system size (77 to 96% with a doubling of system size).  The 

accuracy of FMO2 is more comparable to the SMFA Level 1 method, with an average error of about 0.46 

kcal/mol per water monomer.  This level of error is clearly unacceptable for many applications, despite the 

accurate reproduction of the relative energies between water cluster isomers.  To produce an acceptable level of 

error FMO3 must be used, producing errors in agreement with SMFA Level 3 but significantly increasing the 

computational cost.  It is important point out that the accuracy of FMO2 can be increased for single point 

energy calculations by placing more than one water molecule per fragment, however this type of fragmentation 

scheme can become problematic for optimizations and molecular dynamics (MD) simulations where individual 

water molecules may move apart.       

MD simulations in aqueous solution are at present primarily carried out using classical force fields. 

Simulations of water (and solutes in water) require a large number of evaluations of the energy and energy 

gradient of the whole simulation system. As noted here and elsewhere, the water monomer-monomer interaction 

fails to account for a large percentage of the water binding energy per molecule, and so does not provide the 

basis for a quantitatively accurate study of water dynamics, even though pair models are frequently used.65-67 
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FMO and SMFA appear to provide a quantitative approach to the energetics of water dynamics; the challenging 

task is to incorporate these approaches into a computationally feasible algorithm for dynamical simulations. 

 As part of this work, the open-shell FMO method has been implemented in the GAMESS program 

package and parallelized using GDDI for the HF, MP2, and CC levels of electronic structure theory.  The 

accuracy of the method was tested by calculating the absolute and relative energetics of open-shell molecular 

clusters.  The ability of the method to reproduce reaction enthalpies was also tested using the RAFT reaction.  It 

was demonstrated that in both cases the open-shell FMO method provides energies and properties within 0.0-

2.0 kcal/mol of ab initio calculations. 

 The need for a single reference open-shell FMO method was fulfilled through this work, providing a 

scalable method for use on large chemical systems such as the RAFT reaction.  The combination of accuracy 

and reduction in computational expense provides a means for accurate calculations on much larger open-shell 

radical chemical systems than was previously available. 

 The gradients for the open-shell FMO method have also been derived and then implemented in the 

GAMESS program package and parallelized using the GDDI for the ROHF level of electronic structure theory.  

The ability of the FMO-ROHF method to reproduce accurate total energies and geometries for a variety of 

chemical systems with varying multiplicities was tested.  The accuracy of adiabatic excitation energies was also 

investigated and it was demonstrated that the open-shell FMO method is capable of producing both accurate 

geometries as well as adiabatic excitation energies within 0.01 to 0.85 kcal/mol of ab initio calculations.  

Timings and memory requirements for the relatively small test systems also show the ability of the open-shell 

FMO method to provide a route to geometry optimizations on larger systems.   

 This work contributes a scalable method for geometry optimizations on large chemical systems 

through the implementation of the gradient for the single-reference open-shell FMO method. Through the 

combination of reduced computational cost as well as chemical accuracy shown, the open-shell FMO method 

provides a means for accurate geometry optimizations on open-shell radical systems much larger than 

previously possible. 

 Through this work, the EFMO method has been extended to include all five intermolecular interactions 

present in the EFP method.  The inclusion of short-range intermolecular interactions allows the extended EFMO 

method to be used with correlated ab initio methods such as MP2 and CC.  The accuracy of the extended 

EFMO method was tested versus the standard FMO2 method and MP2.  The extended EFMO method was 

shown to provide superior average errors, relative energies and binding energies for all cluster sizes and basis 

sets compared to the FMO2 method.  Significant reductions in wall clock times compared to the FMO2 method 

were also shown.  Through the reduction of the number of explicit QM dimers performed during extended 
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EFMO method calculations, time savings of up to 93% compared to the FMO2 method were achieved while at 

the same time providing a more accurate estimate of the MP2 energies.  

 Future work on the extended EFMO method will include the implementation of gradients for the newly 

added energy terms in order to enable geometry optimizations.  With the addition of energy gradients, as well as 

the improved accuracy and reduction in computational requirements versus the FMO2 method, the extended 

EFMO method could provide a computationally feasible algorithm for dynamical simulations. 

 In closing, during the last several decades fragment-based methods have come a long way from the 

initial stage of method development to large scale applications, which span many types of systems: molecular 

clusters, proteins, DNA, oligosaccharides, zeolites, quantum dots, nanowires and others. Despite the very 

considerable progress, they remain underused; there may be several reasons for this. Some of the software 

developments are only locally implemented, making it difficult for most interested users to utilize the methods. 

Many, perhaps most methods are specific to one particular program; users who are unfamiliar with that program 

may have an inertial barrier to using it. Second, many applications so far have been performed in what should 

be considered demonstrative fashion, with low level wave functions and basis sets. Third, in some cases the 

applications are not conducted while properly considering all necessary effects and factors; the most 

conspicuous example is the need to incorporate solvent effects and entropy in biochemical applications.  

 Nevertheless, fragment-based methods also offer many advantages. One is the efficiency and the 

ability to compute realistic systems. Another is the additional information that they can deliver, such as the 

intrinsic details of the physical picture of the interactions in the system. The application field is very broad, 

encompassing most systems of finite size that many chemists and physicists are interested in. It is expected that 

in near future with the revolutionary progress in the computer technology and the advent of multicore CPUs and 

GPUs, increasing level of calculations and the ease of their performance, the fragment-based methods will grow 

more popular in computational community.  
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